Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization sup...Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.展开更多
The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and ge...The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming.展开更多
Two-line hybrid rice with excellent quality is preferred in the Chinese market.However,there is a trade-off between reducing costs for hybrid seed production and lowering the outcrossing rate of the sterile line,which...Two-line hybrid rice with excellent quality is preferred in the Chinese market.However,there is a trade-off between reducing costs for hybrid seed production and lowering the outcrossing rate of the sterile line,which is largely determined by the stigma exsertion rate(SER).In this study,we constructed mutants of male sterility lines with improved grain length(GL)and SER in three elite early-season indica rice varieties through targeted manipulation of the TMS5 and GS3 genes using CRISPR/Cas9-mediated multiplex systems.We obtained a series of marker-free gs3 single mutants and gs3tms5 double mutants with significantly higher SER,longer grains,and increased 1000-grain weight compared with the wild type(WT).Importantly,the typically thermo-sensitive genic male sterile(TGMS)trait with a higher SER was observed in gs3tms5 mutants,and their F1 hybrids exhibited remarkable improvements in grain shape and yield-related traits.Our findings provided an efficient method to generate new valuable TGMS germplasm with improved SER through the mutagenesis of GS3 and TMS5 synergistically,and demonstrated that GS3 had pleiotropic effects on grain size,SER,and grain quality in early-season indica rice.展开更多
The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa a...The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa are still largely unclear.We previously obtained the natural male sterile line WS24-3 of non-heading Chinese cabbage and located the male sterile locus,Bra2Ms,on the A2 chromosome.Cytological observations revealed that the male sterility of WS24-3 resulted from disruption of the meiosis process during pollen formation.Fine mapping of Bra2Ms delimited the locus within a physical distance of about 129 kb on the A2 chromosome of B.rapa.The Bra039753 gene encodes a plant homeodomain(PHD)-finger protein and is considered a potential candidate gene for Bra2Ms.Bra039753 was significantly downregulated in sterile line WS24-3 compared to the fertile line at the meiotic anther stage.Sequence analysis of Bra039753 identified a 369 bp fragment insertion in the first exon in male sterile plants,which led to an amino acid insertion in the Bra039753 protein.In addition,the 369 bp fragment insertion was found to cosegregate with the male sterility trait.This study identified a novel locus related to male sterility in non-heading Chinese cabbage,and the molecular marker obtained in this study will be beneficial for the marker-assisted selection of excellent sterile lines in non-heading Chinese cabbage and other Brassica crops.展开更多
The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by ...The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.展开更多
There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with ...There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with wound-edge recognition was developed using afield-programmable gate array(FPGA)and a high-performance image-processing platform to realize intelligent and precise sterilization of wounds.SOLIDWORKS was used to design the mechanical structure of the device,and it was manufactured using 3D printing.The device used an improvement of the traditional Sobel detection algorithm,which extends the detection of edges in only the x and y directions to eight directions(0○,45○,90○,135○,180○,225○,270○,and 315○),completing the wound-edge detection by adaptive thresholding.The device can be controlled according to different shapes of sterilization area to adjust the positioning of a single plasma-jet tube in the horizontal plane for two-dimensional move-ment;the distance between the plasma-jet tube and the surface of the object to be sterilized can be also adjusted in the vertical direction.In this way,motors are used to move the plasma jet and achieve automatic,efficient,and accurate plasma sterilization.It was found that a good sterilization effect could be achieved at both the culture-medium level and the biological-tissue level.The ideal sterilization parameters at the culture-medium level were a speed of 2 mm/s and aflow rate of 0.6 slm,while at the biological-tissue level,these values were 1 mm/s and 0.6 slm,respectively.展开更多
Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emergi...Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.展开更多
The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in ...The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in rice are far from established.Here,we isolated rice gene,AGL1 that controlled grain size and determines the fate of the sterile lemma.Loss of function of AGL1 produced larger grains and reduced the size of the sterile lemma.Larger grains in the agl1 mutant were caused by a larger number of cells that were longer and wider than in the wild type.The sterile lemma in the mutant spikelet was converted to a rudimentary glume-like organ.Our findings showed that the AGL1(also named LAX1)protein positively regulated G1 expression,and negatively regulated NSG1 expression,thereby affecting the fate of the sterile lemma.Taken together,our results revealed that AGL1 played a key role in negative regulation of grain size by controlling cell proliferation and expansion,and supported the opinion that rudimentary glume and sterile lemma in rice are homologous organs.展开更多
Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been pro...Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been produced due to several challenges,like inadequate variation of agronomic traits,incomplete sterility,weak resilience of restorer lines,and difficulty in combining strong dominance.Therefore,the morphological and cytological identification of CMS in cotton will facilitate hybrid breeding.Results Two F_(2) segregating populations of cotton were constructed from cytoplasmic male sterile lines(HaA and 01A,maternal)and restorer lines(HaR and 26R,paternal).Genetic analysis of these populations revealed a segregation ratio of 3:1 for fertile to sterile plants.Phenotypic analysis indicated no significant differences in traits of flower bud development between sterile and fertile plants.However,sterile plants exhibited smaller floral organs,shortened filament lengths,and anther atrophy on the flowering day in comparison with the fertile plants.When performed scanning electron microscopy(SEM),the two F_(2) populations revealed morphological variations in the anther epidermis.Cellular analysis showed no significant differences in pollen development before pollen maturation.Interestingly,between the pollen maturation and flowering stages,the tapetum layer of sterile plants degenerated prematurely,resulting in abnormal pollen grains and gradual pollen degradation.Conclusion The results of this study suggest that fertility-restoring genes are controlled by a single dominant gene.Sterile plants exhibit distinctive floral morphology,which is characterized by stamen atrophy and abnormal anthers.Pollen abortion occurs between pollen maturity and flowering,indicating that premature tapetum degradation may be the primary cause of pollen abortion.Overall,our study provides a theoretical basis for utilizing CMS in hybrid breeding and in-depth investigation of the dominant configuration of cotton hybrid combinations,mechanisms of sterility,and the role of sterile and restorer genes.展开更多
Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts o...Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts of ozone in the air through lightning to purify the ecological environment. The product of ozone decomposition is oxygen, without secondary pollution. Ozone sterilizer is widely used in the epidemic prevention and control of intensive breeding farms and achieved remarkable results. If the concentration and action time of ozone can be accurately controlled, then ozone can quickly eliminate pathogens, without harming the normal cells in the human body. How to use medical ozone for epidemic prevention, treatment and health care is a subject worthy of serious study, which should arouse the attention of the experts in the field.展开更多
Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effec...Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.展开更多
Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The go...Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The goal is to standardize the selection of loading conditions for this sterilization method and avoid positive biological monitoring results.Methods:Physical monitoring,Class I chemical indicator card monitoring,Class IV chemical indicator card monitoring,and biological monitoring were used to monitor the hydrogen peroxide low-temperature plasma sterilization process.The sterilization effect on instruments inside the Johnson&Johnson 100S plasma sterilizer was monitored and the qualification of various monitoring methods was compared.Results:The comparison showed that when non-standard or adsorption-prone packaging materials were used,the interception rate of biological monitoring and Class IV chemical indicator cards was significantly higher than that of physical monitoring and Class I chemical indicator cards.These methods more intuitively and effectively detected sterilization failures.Conclusion:Biological monitoring and Class IV chemical indicator cards are safe,fast,accurate,and easy to interpret in hydrogen peroxide low-temperature plasma sterilization,especially for monitoring instruments inside packages.They provide a reliable basis for the release of sterilized instrument packages.Identifying the reasons for positive biological monitoring results in hydrogen peroxide low-temperature plasma sterilization and taking effective measures promptly can minimize associated risks.展开更多
Objective:To analyze the effect of quality control circle on the central sterile supply department(CSSD).Methods:The control group and the observation group each consisted of 180 instruments received by the sterilizat...Objective:To analyze the effect of quality control circle on the central sterile supply department(CSSD).Methods:The control group and the observation group each consisted of 180 instruments received by the sterilization supply center from January to March 2023 and 11 CSSD staff.The control group underwent routine management while quality control circle was implemented in the observation group.The quality of work,disinfection and sterilization qualification rates,disinfection and sterilization of various instruments,cleaning indicators,and management satisfaction of both groups were compared.Results:The observation group scored higher in terms of work quality,the qualification rate of disinfection and sterilization in each link,the disinfection and sterilization of instruments,and cleaning indicators compared to the control group.Besides,the management satisfaction of the observation group was higher than that of the control group(P<0.05).Conclusion:A quality control circle ensures the quality of work,improves the cleaning,disinfection,and sterilization of instruments of the CSSD,and improves the management satisfaction of the CSSD staff.展开更多
Vegetable crops are greatly appreciated for their beneficial nutritional and health components.Hybrid seeds are widely used in vegetable crops for advantages such as high yield and improved resistance,which require th...Vegetable crops are greatly appreciated for their beneficial nutritional and health components.Hybrid seeds are widely used in vegetable crops for advantages such as high yield and improved resistance,which require the participation of male(stamen)and female(pistil)reproductive organs.Male-or female-sterile plants are commonly used for production of hybrid seeds or seedless fruits in vegetables.In this review we will focus on the types of genic male sterility and factors affecting female fertility,summarize typical gene function and research progress related to reproductive organ identity and sporophyte and gametophyte development in vegetable crops[mainly tomato(Solanum lycopersicum)and cucumber(Cucumis sativus)],and discuss the research trends and application perspectives of the sterile trait in vegetable breeding and hybrid production,in order to provide a reference for fertility-related germplasm innovation.展开更多
Deep-ultraviolet(DUV)sterilization technology using DUV-LEDs has attracted considerable attention owing to its portability,eco-friendliness,high potency,and broad-spectrum sterilization.This study compiles the develop...Deep-ultraviolet(DUV)sterilization technology using DUV-LEDs has attracted considerable attention owing to its portability,eco-friendliness,high potency,and broad-spectrum sterilization.This study compiles the developments of recent DUV sterilization research.Recent works have investigated DUV sterilization from the perspective of device improvement and principle investigation:one employed a novel epitaxial structure to optimize the performance and fabrication cost of DUV-LEDs and realized potent virus disinfection effects for various respiratory RNA viruses,and another work explained the disinfection phenomenon of SARS-CoV-2 and its variants(Delta and Omicron)in a cryogenic environment.These studies have contributed significantly to the development of DUV sterilization.展开更多
Cytoplasmic male sterility(CMS)has long been used to produce seedless fruits in perennial woody crops like citrus.A male-sterile somatic cybrid citrus(G1+HBP)was generated by protoplast fusion between a CMS callus par...Cytoplasmic male sterility(CMS)has long been used to produce seedless fruits in perennial woody crops like citrus.A male-sterile somatic cybrid citrus(G1+HBP)was generated by protoplast fusion between a CMS callus parent‘Guoqing No.1’Satsuma mandarin(Citrus unshiu,G1)and a fertile mesophyll parent Hirado Buntan pummelo(Citrus grandis,HBP).To uncover the male-sterile mechanism of G1+HBP,we compared the transcriptome profiles of stamen organ and cell types at five stages between G1+HBP and HBP,including the initial stamen primordia,enlarged stamen primordia,pollen mother cells,tetrads,and microspores captured by laser microdissection.The stamen organ and cell types showed distinct gene expression profiles.A majority of genes involved in stamen development were differentially expressed,especially CgAP3.2,which was downregulated in enlarged stamen primordia and upregulated in tetrads of G1+HBP compared with HBP.Jasmonic acid-and auxin-related biological processes were enriched among the differentially expressed genes of stamen primordia,and the content of jasmonic acid biosynthesis metabolites was higher in flower buds and anthers of G1+HBP.In contrast,the content of auxin biosynthesis metabolites was lower in G1+HBP.The mitochondrial tricarboxylic acid cycle and oxidative phosphorylation processes were enriched among the differentially expressed genes in stamen primordia,meiocytes,and microspores,indicating the dysfunction of mitochondria in stamen organ and cell types of G1+HBP.Taken together,the results indicate that malfunction of mitochondria-nuclear interaction might cause disorder in stamen development,and thus lead to male sterility in the citrus cybrid.展开更多
Efficient sterilization by a plasma photocatalytic system(PPS)requires strong synergy between plasma and photocatalyst to inactivate microorganisms while suppressing the formation of secondary pollutants.Here,we repor...Efficient sterilization by a plasma photocatalytic system(PPS)requires strong synergy between plasma and photocatalyst to inactivate microorganisms while suppressing the formation of secondary pollutants.Here,we report that a PPS constructed from a needle array corona discharge and Au/TiO2plasmonic nanocatalyst could remarkably improve the sterilization of Escherichia coli(E.coli)and alleviate formation of the discharge pollutant O3.At 6 kV,the combination of corona discharge and Au/TiO2achieves sterilization efficiency of 100%within an exposure time of 5 min.At 5 kV and an exposure time of 8 min,the presence of Au/TiO2improves sterilization efficiency of the corona discharge from 73%to 91%and reduces the O3concentration from 0.38 to 0.04 ppm,whereas the presence of TiO2reduces the sterilization efficiency and O3concentration to 66%and 0.17 ppm,respectively.The Au/TiO2in the PPS enables a uniform corona discharge,enhances the interaction between plasma,E.coli and nanocatalysts,and suppresses the formation of O3.Further,the Au/TiO2can be excited by ultraviolet-visible light emitted from the plasma to generate electron-hole pairs,and thus contributes to the formation of reactive radicals and the oxidative inactivation of E.coli.The PPS constructed from a needle array corona discharge and Au-based plasmonic nanocatalyst provides a promising approach for developing high-efficiency sterilization techniques.展开更多
Plant male reproduction is a fine-tuned developmental process that is susceptible to stressful environments and influences crop grain yields.Phytohormone signaling functions in control of plant normal growth and devel...Plant male reproduction is a fine-tuned developmental process that is susceptible to stressful environments and influences crop grain yields.Phytohormone signaling functions in control of plant normal growth and development as well as in response to external stresses,but the interaction or crosstalk among phytohormone signaling,stress response,and male reproduction in plants remains poorly understood.Cross-species comparison among 514 stress-response transcriptomic libraries revealed that ms33-6038,a genic male sterile mutant deficient in the Zm Ms33/Zm GPAT6 gene,displayed an excessive drought stress-like transcriptional reprogramming in anthers triggered mainly by disturbed jasmonic acid(JA)homeostasis.An increased level of JA appeared in Zm Ms33-deficient anthers at both meiotic and postmeiotic stages and activated genes involved in JA biosynthesis and signaling as well as genes functioning in JA-mediated drought response.Excessive accumulation of JA elevated expression level of a gene encoding a WRKY transcription factor that activated the Zm Ms33 promoter.These findings reveal a feedback loop of Zm Ms33-JA-WRKY-Zm Ms33 in controlling male sterility and JA-mediated stress response in maize,shedding light on the crosstalk of stress response and male sterility mediated by phytohormone homeostasis and signaling.展开更多
Introduction: The aim of this study was to improve the DISTER-UV and to perform microbiological quality control at the biomedical laboratory of the West African Polytechnic University from January 2022 to November 202...Introduction: The aim of this study was to improve the DISTER-UV and to perform microbiological quality control at the biomedical laboratory of the West African Polytechnic University from January 2022 to November 2022. Methodology: During this eleven-month prospective study, we set up a quality control device (QCD). For microbiological quality control, we performed different cultures of bacteria with different bacteriological and morphological characteristics at T0 (no sterilization) and at T30 (after 30 minutes of sterilization under DISTER-UV). Results: After the realization, the DCQ attached to the DISTER-UV1 allows to display of the UV wavelength present in the light box. This device also displays and alerts when the UV intensity emitted by the lamps is below 250 nm. During microbiological quality control, the cultures carried out at T30 and incubated for 24 hours did not reveal any bacterial colonies. This shows the bactericidal character of DISTER-UV-2. Conclusion: The improvement and the microbiological quality control allowed us to switch from DISTER-UV1 (without sensor) to DISTER-UV-2 (with sensor or DCQ). The biological control allowed us to affirm that the DISTER-UV-2 is bactericidal.展开更多
The in-depth integration of healthy China with national fitness and the hope to achieve the long-term goal of “leading Sports Nation” by 2035, can’t be realized without gyms where people do physical exercise. The i...The in-depth integration of healthy China with national fitness and the hope to achieve the long-term goal of “leading Sports Nation” by 2035, can’t be realized without gyms where people do physical exercise. The international academic community recognizes that the 21<sup>st</sup> century is the golden time for sustainable and quality development. Taking a national perspective, authors of this paper studied the feasibility of building underground gyms in China through the approach of interdisciplinary research, as well as its dilemmas and pathways, and found out that quality development of underground space can effectively address challenges for large cities in China by increasing the resilience of urban area, and give full engage to underground capacity in striving for the goal of carbon peak and carbon neutrality. Underground gyms can also be incorporated into resident’s 15-min fitness circle, satisfying people’s needs of doing exercise at any time and in an easily-accessible place. However, China’s underground area development has been hindered by unclear property rights, chaotic action and utilization, and relatively backward laws and regulations. Moreover, building underground gyms still has to solve many problems such as poor air quality, severe sweat smell, and excessive bacteria and viruses. It is suggested that the capable authorities shall first clarify laws and regulations over place compound utilization, property rights and fire protection to facilitate the process of building underground gyms;encourage fitness practitioners to explore underground areas as gyms, and transfer their ground business to underground;then produce an intelligent and systematic solution of air quality improvement featuring oxygen-enrichment and “sterilization” with integration, a variety of instruments to monitor air quality of indoor gyms in real-time, to realize automatic control and management, and truly create worry-free and oxygen-enriched underground gyms with no sweat smell and no fear of bacteria and viruses.展开更多
文摘Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.
文摘The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming.
基金the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY24C130004,LY22C135104,and LY23C130002)the National Natural Science Foundation of China(Grant No.31501288)+1 种基金the Open Project Program of State Key Laboratory of Rice Biology and Breeding,China(Grant No.20210207)Central Publicinterest Scientific Institution Basal Research Fund,China(Grant No.CPSIBRF-CNRRI-202203).
文摘Two-line hybrid rice with excellent quality is preferred in the Chinese market.However,there is a trade-off between reducing costs for hybrid seed production and lowering the outcrossing rate of the sterile line,which is largely determined by the stigma exsertion rate(SER).In this study,we constructed mutants of male sterility lines with improved grain length(GL)and SER in three elite early-season indica rice varieties through targeted manipulation of the TMS5 and GS3 genes using CRISPR/Cas9-mediated multiplex systems.We obtained a series of marker-free gs3 single mutants and gs3tms5 double mutants with significantly higher SER,longer grains,and increased 1000-grain weight compared with the wild type(WT).Importantly,the typically thermo-sensitive genic male sterile(TGMS)trait with a higher SER was observed in gs3tms5 mutants,and their F1 hybrids exhibited remarkable improvements in grain shape and yield-related traits.Our findings provided an efficient method to generate new valuable TGMS germplasm with improved SER through the mutagenesis of GS3 and TMS5 synergistically,and demonstrated that GS3 had pleiotropic effects on grain size,SER,and grain quality in early-season indica rice.
基金We thank the Wuhan Major Project of Key Technologies in Biological Breeding and New Variety Cultivation,China(2022021302024852)The Science and Technology Support Project of Rural Vitalization in Hubei Province,China(2022BBA121)+1 种基金the Key Research and Development Project of Hubei Province,China(2021BBA097)The Key Research and Development Project of Hubei Province,China(2021BBA102)。
文摘The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa are still largely unclear.We previously obtained the natural male sterile line WS24-3 of non-heading Chinese cabbage and located the male sterile locus,Bra2Ms,on the A2 chromosome.Cytological observations revealed that the male sterility of WS24-3 resulted from disruption of the meiosis process during pollen formation.Fine mapping of Bra2Ms delimited the locus within a physical distance of about 129 kb on the A2 chromosome of B.rapa.The Bra039753 gene encodes a plant homeodomain(PHD)-finger protein and is considered a potential candidate gene for Bra2Ms.Bra039753 was significantly downregulated in sterile line WS24-3 compared to the fertile line at the meiotic anther stage.Sequence analysis of Bra039753 identified a 369 bp fragment insertion in the first exon in male sterile plants,which led to an amino acid insertion in the Bra039753 protein.In addition,the 369 bp fragment insertion was found to cosegregate with the male sterility trait.This study identified a novel locus related to male sterility in non-heading Chinese cabbage,and the molecular marker obtained in this study will be beneficial for the marker-assisted selection of excellent sterile lines in non-heading Chinese cabbage and other Brassica crops.
基金supported by the National Natural Science Foundation of China(Nos.22176145,82172612)the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF 2001)the Fundamental Research Funds for the Central Universities(22120210137).
文摘The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.
基金supported by:the National Natural Science Foundation of China under Grant Nos.62163009 and 61864001the Natural Science Foundation of Guangxi Province under Grant No.2021JJD170019+1 种基金the Foundation of Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Guilin University of Electronic Technology)under Grant No.YQ23103the Innovation Project of Guangxi Graduate Education under Grant No.YCSW2022277.
文摘There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with wound-edge recognition was developed using afield-programmable gate array(FPGA)and a high-performance image-processing platform to realize intelligent and precise sterilization of wounds.SOLIDWORKS was used to design the mechanical structure of the device,and it was manufactured using 3D printing.The device used an improvement of the traditional Sobel detection algorithm,which extends the detection of edges in only the x and y directions to eight directions(0○,45○,90○,135○,180○,225○,270○,and 315○),completing the wound-edge detection by adaptive thresholding.The device can be controlled according to different shapes of sterilization area to adjust the positioning of a single plasma-jet tube in the horizontal plane for two-dimensional move-ment;the distance between the plasma-jet tube and the surface of the object to be sterilized can be also adjusted in the vertical direction.In this way,motors are used to move the plasma jet and achieve automatic,efficient,and accurate plasma sterilization.It was found that a good sterilization effect could be achieved at both the culture-medium level and the biological-tissue level.The ideal sterilization parameters at the culture-medium level were a speed of 2 mm/s and aflow rate of 0.6 slm,while at the biological-tissue level,these values were 1 mm/s and 0.6 slm,respectively.
基金supported by National Natural Science Foundation of China(Nos.52077129 and 52277150)the Natural Science Foundation of Shandong Province(No.ZR2022ME037).
文摘Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.
基金supported by the National Natural Science Foundation of China(32372118,32188102,32071993)the Qian Qian Academician Workstation,Specific Research Fund of the Innovation Platform for Academicians in Hainan Province(YSPTZX202303)+1 种基金Key Research and Development Program of Zhejiang Province(2021C02056)Hainan Seed Industry Laboratory,China(B21HJ0220)。
文摘The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in rice are far from established.Here,we isolated rice gene,AGL1 that controlled grain size and determines the fate of the sterile lemma.Loss of function of AGL1 produced larger grains and reduced the size of the sterile lemma.Larger grains in the agl1 mutant were caused by a larger number of cells that were longer and wider than in the wild type.The sterile lemma in the mutant spikelet was converted to a rudimentary glume-like organ.Our findings showed that the AGL1(also named LAX1)protein positively regulated G1 expression,and negatively regulated NSG1 expression,thereby affecting the fate of the sterile lemma.Taken together,our results revealed that AGL1 played a key role in negative regulation of grain size by controlling cell proliferation and expansion,and supported the opinion that rudimentary glume and sterile lemma in rice are homologous organs.
基金supported by the Fund for the Biological Breeding-Major Projects in National Science and Technology(2023ZD04038)the Key Project for Agricultural Breakthrough in Core Technology of Xinjiang Production and Construction Crops(NYHXGG,2023AA102)the Key Project for Science and Technology Development of Shihezi city,Xinjiang Production and Construction Crops(2022NY01)。
文摘Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been produced due to several challenges,like inadequate variation of agronomic traits,incomplete sterility,weak resilience of restorer lines,and difficulty in combining strong dominance.Therefore,the morphological and cytological identification of CMS in cotton will facilitate hybrid breeding.Results Two F_(2) segregating populations of cotton were constructed from cytoplasmic male sterile lines(HaA and 01A,maternal)and restorer lines(HaR and 26R,paternal).Genetic analysis of these populations revealed a segregation ratio of 3:1 for fertile to sterile plants.Phenotypic analysis indicated no significant differences in traits of flower bud development between sterile and fertile plants.However,sterile plants exhibited smaller floral organs,shortened filament lengths,and anther atrophy on the flowering day in comparison with the fertile plants.When performed scanning electron microscopy(SEM),the two F_(2) populations revealed morphological variations in the anther epidermis.Cellular analysis showed no significant differences in pollen development before pollen maturation.Interestingly,between the pollen maturation and flowering stages,the tapetum layer of sterile plants degenerated prematurely,resulting in abnormal pollen grains and gradual pollen degradation.Conclusion The results of this study suggest that fertility-restoring genes are controlled by a single dominant gene.Sterile plants exhibit distinctive floral morphology,which is characterized by stamen atrophy and abnormal anthers.Pollen abortion occurs between pollen maturity and flowering,indicating that premature tapetum degradation may be the primary cause of pollen abortion.Overall,our study provides a theoretical basis for utilizing CMS in hybrid breeding and in-depth investigation of the dominant configuration of cotton hybrid combinations,mechanisms of sterility,and the role of sterile and restorer genes.
文摘Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts of ozone in the air through lightning to purify the ecological environment. The product of ozone decomposition is oxygen, without secondary pollution. Ozone sterilizer is widely used in the epidemic prevention and control of intensive breeding farms and achieved remarkable results. If the concentration and action time of ozone can be accurately controlled, then ozone can quickly eliminate pathogens, without harming the normal cells in the human body. How to use medical ozone for epidemic prevention, treatment and health care is a subject worthy of serious study, which should arouse the attention of the experts in the field.
文摘Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.
文摘Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The goal is to standardize the selection of loading conditions for this sterilization method and avoid positive biological monitoring results.Methods:Physical monitoring,Class I chemical indicator card monitoring,Class IV chemical indicator card monitoring,and biological monitoring were used to monitor the hydrogen peroxide low-temperature plasma sterilization process.The sterilization effect on instruments inside the Johnson&Johnson 100S plasma sterilizer was monitored and the qualification of various monitoring methods was compared.Results:The comparison showed that when non-standard or adsorption-prone packaging materials were used,the interception rate of biological monitoring and Class IV chemical indicator cards was significantly higher than that of physical monitoring and Class I chemical indicator cards.These methods more intuitively and effectively detected sterilization failures.Conclusion:Biological monitoring and Class IV chemical indicator cards are safe,fast,accurate,and easy to interpret in hydrogen peroxide low-temperature plasma sterilization,especially for monitoring instruments inside packages.They provide a reliable basis for the release of sterilized instrument packages.Identifying the reasons for positive biological monitoring results in hydrogen peroxide low-temperature plasma sterilization and taking effective measures promptly can minimize associated risks.
文摘Objective:To analyze the effect of quality control circle on the central sterile supply department(CSSD).Methods:The control group and the observation group each consisted of 180 instruments received by the sterilization supply center from January to March 2023 and 11 CSSD staff.The control group underwent routine management while quality control circle was implemented in the observation group.The quality of work,disinfection and sterilization qualification rates,disinfection and sterilization of various instruments,cleaning indicators,and management satisfaction of both groups were compared.Results:The observation group scored higher in terms of work quality,the qualification rate of disinfection and sterilization in each link,the disinfection and sterilization of instruments,and cleaning indicators compared to the control group.Besides,the management satisfaction of the observation group was higher than that of the control group(P<0.05).Conclusion:A quality control circle ensures the quality of work,improves the cleaning,disinfection,and sterilization of instruments of the CSSD,and improves the management satisfaction of the CSSD staff.
基金This work was supported by National Natural Science Foundation of China(32025033)and(31930097)the Chinese Universities Scientific Fund(2022TC009).
文摘Vegetable crops are greatly appreciated for their beneficial nutritional and health components.Hybrid seeds are widely used in vegetable crops for advantages such as high yield and improved resistance,which require the participation of male(stamen)and female(pistil)reproductive organs.Male-or female-sterile plants are commonly used for production of hybrid seeds or seedless fruits in vegetables.In this review we will focus on the types of genic male sterility and factors affecting female fertility,summarize typical gene function and research progress related to reproductive organ identity and sporophyte and gametophyte development in vegetable crops[mainly tomato(Solanum lycopersicum)and cucumber(Cucumis sativus)],and discuss the research trends and application perspectives of the sterile trait in vegetable breeding and hybrid production,in order to provide a reference for fertility-related germplasm innovation.
基金M.Baeva,A.Vorobyov,V.Neplokh acknowledge the Russian Science Foundation No.22-79-10286(https://rscf.ru/project/22-79-10286/)for supporting silicon substrate processingD.Gets,A.Polushkin and S.Makarov acknowledge the Ministry of Science and Higher Education of the Russian Federation(Project 075-15-2021-589)for supporting perovskite synthesis+1 种基金A.G.Nasibulin and D.V.Krasnikov acknowledge the Russian Science Foundation(grant No.20-73-10256)for supporting synthesis of SWCNTsWe also thank Dr.E.Danilovskiy for valuable engineering advice and N.Zverkov for technical assistance.
文摘Deep-ultraviolet(DUV)sterilization technology using DUV-LEDs has attracted considerable attention owing to its portability,eco-friendliness,high potency,and broad-spectrum sterilization.This study compiles the developments of recent DUV sterilization research.Recent works have investigated DUV sterilization from the perspective of device improvement and principle investigation:one employed a novel epitaxial structure to optimize the performance and fabrication cost of DUV-LEDs and realized potent virus disinfection effects for various respiratory RNA viruses,and another work explained the disinfection phenomenon of SARS-CoV-2 and its variants(Delta and Omicron)in a cryogenic environment.These studies have contributed significantly to the development of DUV sterilization.
基金This research was financially supported by the Ministry of Science and Technology of China(2022YFF1003101)the National Natural Science Foundation of China(31530065,31820103011,32202451)the Foundation of Hubei Hongshan Laboratory(2021hszd009).
文摘Cytoplasmic male sterility(CMS)has long been used to produce seedless fruits in perennial woody crops like citrus.A male-sterile somatic cybrid citrus(G1+HBP)was generated by protoplast fusion between a CMS callus parent‘Guoqing No.1’Satsuma mandarin(Citrus unshiu,G1)and a fertile mesophyll parent Hirado Buntan pummelo(Citrus grandis,HBP).To uncover the male-sterile mechanism of G1+HBP,we compared the transcriptome profiles of stamen organ and cell types at five stages between G1+HBP and HBP,including the initial stamen primordia,enlarged stamen primordia,pollen mother cells,tetrads,and microspores captured by laser microdissection.The stamen organ and cell types showed distinct gene expression profiles.A majority of genes involved in stamen development were differentially expressed,especially CgAP3.2,which was downregulated in enlarged stamen primordia and upregulated in tetrads of G1+HBP compared with HBP.Jasmonic acid-and auxin-related biological processes were enriched among the differentially expressed genes of stamen primordia,and the content of jasmonic acid biosynthesis metabolites was higher in flower buds and anthers of G1+HBP.In contrast,the content of auxin biosynthesis metabolites was lower in G1+HBP.The mitochondrial tricarboxylic acid cycle and oxidative phosphorylation processes were enriched among the differentially expressed genes in stamen primordia,meiocytes,and microspores,indicating the dysfunction of mitochondria in stamen organ and cell types of G1+HBP.Taken together,the results indicate that malfunction of mitochondria-nuclear interaction might cause disorder in stamen development,and thus lead to male sterility in the citrus cybrid.
基金National Natural Science Foundation of China(Nos.52041001,21808024)Natural Science Foundation of Liaoning Province(No.2020-MS-126)Special Foundation for Key Fields of Colleges and Universities in Guangdong Province(No.2021ZDZX4094)。
文摘Efficient sterilization by a plasma photocatalytic system(PPS)requires strong synergy between plasma and photocatalyst to inactivate microorganisms while suppressing the formation of secondary pollutants.Here,we report that a PPS constructed from a needle array corona discharge and Au/TiO2plasmonic nanocatalyst could remarkably improve the sterilization of Escherichia coli(E.coli)and alleviate formation of the discharge pollutant O3.At 6 kV,the combination of corona discharge and Au/TiO2achieves sterilization efficiency of 100%within an exposure time of 5 min.At 5 kV and an exposure time of 8 min,the presence of Au/TiO2improves sterilization efficiency of the corona discharge from 73%to 91%and reduces the O3concentration from 0.38 to 0.04 ppm,whereas the presence of TiO2reduces the sterilization efficiency and O3concentration to 66%and 0.17 ppm,respectively.The Au/TiO2in the PPS enables a uniform corona discharge,enhances the interaction between plasma,E.coli and nanocatalysts,and suppresses the formation of O3.Further,the Au/TiO2can be excited by ultraviolet-visible light emitted from the plasma to generate electron-hole pairs,and thus contributes to the formation of reactive radicals and the oxidative inactivation of E.coli.The PPS constructed from a needle array corona discharge and Au-based plasmonic nanocatalyst provides a promising approach for developing high-efficiency sterilization techniques.
基金funded by the National Key Research and Development Program of China (2021YFF1000302,2022YFF1003500, and 2022YFF1002400)the Fundamental Research Funds for the Central Universities of China (FRF-IDRY-20-038 and 06500136)the National Natural Science Foundation of China (31971958)。
文摘Plant male reproduction is a fine-tuned developmental process that is susceptible to stressful environments and influences crop grain yields.Phytohormone signaling functions in control of plant normal growth and development as well as in response to external stresses,but the interaction or crosstalk among phytohormone signaling,stress response,and male reproduction in plants remains poorly understood.Cross-species comparison among 514 stress-response transcriptomic libraries revealed that ms33-6038,a genic male sterile mutant deficient in the Zm Ms33/Zm GPAT6 gene,displayed an excessive drought stress-like transcriptional reprogramming in anthers triggered mainly by disturbed jasmonic acid(JA)homeostasis.An increased level of JA appeared in Zm Ms33-deficient anthers at both meiotic and postmeiotic stages and activated genes involved in JA biosynthesis and signaling as well as genes functioning in JA-mediated drought response.Excessive accumulation of JA elevated expression level of a gene encoding a WRKY transcription factor that activated the Zm Ms33 promoter.These findings reveal a feedback loop of Zm Ms33-JA-WRKY-Zm Ms33 in controlling male sterility and JA-mediated stress response in maize,shedding light on the crosstalk of stress response and male sterility mediated by phytohormone homeostasis and signaling.
文摘Introduction: The aim of this study was to improve the DISTER-UV and to perform microbiological quality control at the biomedical laboratory of the West African Polytechnic University from January 2022 to November 2022. Methodology: During this eleven-month prospective study, we set up a quality control device (QCD). For microbiological quality control, we performed different cultures of bacteria with different bacteriological and morphological characteristics at T0 (no sterilization) and at T30 (after 30 minutes of sterilization under DISTER-UV). Results: After the realization, the DCQ attached to the DISTER-UV1 allows to display of the UV wavelength present in the light box. This device also displays and alerts when the UV intensity emitted by the lamps is below 250 nm. During microbiological quality control, the cultures carried out at T30 and incubated for 24 hours did not reveal any bacterial colonies. This shows the bactericidal character of DISTER-UV-2. Conclusion: The improvement and the microbiological quality control allowed us to switch from DISTER-UV1 (without sensor) to DISTER-UV-2 (with sensor or DCQ). The biological control allowed us to affirm that the DISTER-UV-2 is bactericidal.
文摘The in-depth integration of healthy China with national fitness and the hope to achieve the long-term goal of “leading Sports Nation” by 2035, can’t be realized without gyms where people do physical exercise. The international academic community recognizes that the 21<sup>st</sup> century is the golden time for sustainable and quality development. Taking a national perspective, authors of this paper studied the feasibility of building underground gyms in China through the approach of interdisciplinary research, as well as its dilemmas and pathways, and found out that quality development of underground space can effectively address challenges for large cities in China by increasing the resilience of urban area, and give full engage to underground capacity in striving for the goal of carbon peak and carbon neutrality. Underground gyms can also be incorporated into resident’s 15-min fitness circle, satisfying people’s needs of doing exercise at any time and in an easily-accessible place. However, China’s underground area development has been hindered by unclear property rights, chaotic action and utilization, and relatively backward laws and regulations. Moreover, building underground gyms still has to solve many problems such as poor air quality, severe sweat smell, and excessive bacteria and viruses. It is suggested that the capable authorities shall first clarify laws and regulations over place compound utilization, property rights and fire protection to facilitate the process of building underground gyms;encourage fitness practitioners to explore underground areas as gyms, and transfer their ground business to underground;then produce an intelligent and systematic solution of air quality improvement featuring oxygen-enrichment and “sterilization” with integration, a variety of instruments to monitor air quality of indoor gyms in real-time, to realize automatic control and management, and truly create worry-free and oxygen-enriched underground gyms with no sweat smell and no fear of bacteria and viruses.