Two-line hybrid rice with excellent quality is preferred in the Chinese market.However,there is a trade-off between reducing costs for hybrid seed production and lowering the outcrossing rate of the sterile line,which...Two-line hybrid rice with excellent quality is preferred in the Chinese market.However,there is a trade-off between reducing costs for hybrid seed production and lowering the outcrossing rate of the sterile line,which is largely determined by the stigma exsertion rate(SER).In this study,we constructed mutants of male sterility lines with improved grain length(GL)and SER in three elite early-season indica rice varieties through targeted manipulation of the TMS5 and GS3 genes using CRISPR/Cas9-mediated multiplex systems.We obtained a series of marker-free gs3 single mutants and gs3tms5 double mutants with significantly higher SER,longer grains,and increased 1000-grain weight compared with the wild type(WT).Importantly,the typically thermo-sensitive genic male sterile(TGMS)trait with a higher SER was observed in gs3tms5 mutants,and their F1 hybrids exhibited remarkable improvements in grain shape and yield-related traits.Our findings provided an efficient method to generate new valuable TGMS germplasm with improved SER through the mutagenesis of GS3 and TMS5 synergistically,and demonstrated that GS3 had pleiotropic effects on grain size,SER,and grain quality in early-season indica rice.展开更多
The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in ...The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in rice are far from established.Here,we isolated rice gene,AGL1 that controlled grain size and determines the fate of the sterile lemma.Loss of function of AGL1 produced larger grains and reduced the size of the sterile lemma.Larger grains in the agl1 mutant were caused by a larger number of cells that were longer and wider than in the wild type.The sterile lemma in the mutant spikelet was converted to a rudimentary glume-like organ.Our findings showed that the AGL1(also named LAX1)protein positively regulated G1 expression,and negatively regulated NSG1 expression,thereby affecting the fate of the sterile lemma.Taken together,our results revealed that AGL1 played a key role in negative regulation of grain size by controlling cell proliferation and expansion,and supported the opinion that rudimentary glume and sterile lemma in rice are homologous organs.展开更多
Objective:To analyze the effect of quality control circle on the central sterile supply department(CSSD).Methods:The control group and the observation group each consisted of 180 instruments received by the sterilizat...Objective:To analyze the effect of quality control circle on the central sterile supply department(CSSD).Methods:The control group and the observation group each consisted of 180 instruments received by the sterilization supply center from January to March 2023 and 11 CSSD staff.The control group underwent routine management while quality control circle was implemented in the observation group.The quality of work,disinfection and sterilization qualification rates,disinfection and sterilization of various instruments,cleaning indicators,and management satisfaction of both groups were compared.Results:The observation group scored higher in terms of work quality,the qualification rate of disinfection and sterilization in each link,the disinfection and sterilization of instruments,and cleaning indicators compared to the control group.Besides,the management satisfaction of the observation group was higher than that of the control group(P<0.05).Conclusion:A quality control circle ensures the quality of work,improves the cleaning,disinfection,and sterilization of instruments of the CSSD,and improves the management satisfaction of the CSSD staff.展开更多
Cytoplasmic male sterility(CMS)has long been used to produce seedless fruits in perennial woody crops like citrus.A male-sterile somatic cybrid citrus(G1+HBP)was generated by protoplast fusion between a CMS callus par...Cytoplasmic male sterility(CMS)has long been used to produce seedless fruits in perennial woody crops like citrus.A male-sterile somatic cybrid citrus(G1+HBP)was generated by protoplast fusion between a CMS callus parent‘Guoqing No.1’Satsuma mandarin(Citrus unshiu,G1)and a fertile mesophyll parent Hirado Buntan pummelo(Citrus grandis,HBP).To uncover the male-sterile mechanism of G1+HBP,we compared the transcriptome profiles of stamen organ and cell types at five stages between G1+HBP and HBP,including the initial stamen primordia,enlarged stamen primordia,pollen mother cells,tetrads,and microspores captured by laser microdissection.The stamen organ and cell types showed distinct gene expression profiles.A majority of genes involved in stamen development were differentially expressed,especially CgAP3.2,which was downregulated in enlarged stamen primordia and upregulated in tetrads of G1+HBP compared with HBP.Jasmonic acid-and auxin-related biological processes were enriched among the differentially expressed genes of stamen primordia,and the content of jasmonic acid biosynthesis metabolites was higher in flower buds and anthers of G1+HBP.In contrast,the content of auxin biosynthesis metabolites was lower in G1+HBP.The mitochondrial tricarboxylic acid cycle and oxidative phosphorylation processes were enriched among the differentially expressed genes in stamen primordia,meiocytes,and microspores,indicating the dysfunction of mitochondria in stamen organ and cell types of G1+HBP.Taken together,the results indicate that malfunction of mitochondria-nuclear interaction might cause disorder in stamen development,and thus lead to male sterility in the citrus cybrid.展开更多
Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization sup...Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.展开更多
Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emergi...Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.展开更多
The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and ge...The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming.展开更多
The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa a...The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa are still largely unclear.We previously obtained the natural male sterile line WS24-3 of non-heading Chinese cabbage and located the male sterile locus,Bra2Ms,on the A2 chromosome.Cytological observations revealed that the male sterility of WS24-3 resulted from disruption of the meiosis process during pollen formation.Fine mapping of Bra2Ms delimited the locus within a physical distance of about 129 kb on the A2 chromosome of B.rapa.The Bra039753 gene encodes a plant homeodomain(PHD)-finger protein and is considered a potential candidate gene for Bra2Ms.Bra039753 was significantly downregulated in sterile line WS24-3 compared to the fertile line at the meiotic anther stage.Sequence analysis of Bra039753 identified a 369 bp fragment insertion in the first exon in male sterile plants,which led to an amino acid insertion in the Bra039753 protein.In addition,the 369 bp fragment insertion was found to cosegregate with the male sterility trait.This study identified a novel locus related to male sterility in non-heading Chinese cabbage,and the molecular marker obtained in this study will be beneficial for the marker-assisted selection of excellent sterile lines in non-heading Chinese cabbage and other Brassica crops.展开更多
The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by ...The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.展开更多
Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been pro...Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been produced due to several challenges,like inadequate variation of agronomic traits,incomplete sterility,weak resilience of restorer lines,and difficulty in combining strong dominance.Therefore,the morphological and cytological identification of CMS in cotton will facilitate hybrid breeding.Results Two F_(2) segregating populations of cotton were constructed from cytoplasmic male sterile lines(HaA and 01A,maternal)and restorer lines(HaR and 26R,paternal).Genetic analysis of these populations revealed a segregation ratio of 3:1 for fertile to sterile plants.Phenotypic analysis indicated no significant differences in traits of flower bud development between sterile and fertile plants.However,sterile plants exhibited smaller floral organs,shortened filament lengths,and anther atrophy on the flowering day in comparison with the fertile plants.When performed scanning electron microscopy(SEM),the two F_(2) populations revealed morphological variations in the anther epidermis.Cellular analysis showed no significant differences in pollen development before pollen maturation.Interestingly,between the pollen maturation and flowering stages,the tapetum layer of sterile plants degenerated prematurely,resulting in abnormal pollen grains and gradual pollen degradation.Conclusion The results of this study suggest that fertility-restoring genes are controlled by a single dominant gene.Sterile plants exhibit distinctive floral morphology,which is characterized by stamen atrophy and abnormal anthers.Pollen abortion occurs between pollen maturity and flowering,indicating that premature tapetum degradation may be the primary cause of pollen abortion.Overall,our study provides a theoretical basis for utilizing CMS in hybrid breeding and in-depth investigation of the dominant configuration of cotton hybrid combinations,mechanisms of sterility,and the role of sterile and restorer genes.展开更多
Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts o...Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts of ozone in the air through lightning to purify the ecological environment. The product of ozone decomposition is oxygen, without secondary pollution. Ozone sterilizer is widely used in the epidemic prevention and control of intensive breeding farms and achieved remarkable results. If the concentration and action time of ozone can be accurately controlled, then ozone can quickly eliminate pathogens, without harming the normal cells in the human body. How to use medical ozone for epidemic prevention, treatment and health care is a subject worthy of serious study, which should arouse the attention of the experts in the field.展开更多
There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with ...There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with wound-edge recognition was developed using afield-programmable gate array(FPGA)and a high-performance image-processing platform to realize intelligent and precise sterilization of wounds.SOLIDWORKS was used to design the mechanical structure of the device,and it was manufactured using 3D printing.The device used an improvement of the traditional Sobel detection algorithm,which extends the detection of edges in only the x and y directions to eight directions(0○,45○,90○,135○,180○,225○,270○,and 315○),completing the wound-edge detection by adaptive thresholding.The device can be controlled according to different shapes of sterilization area to adjust the positioning of a single plasma-jet tube in the horizontal plane for two-dimensional move-ment;the distance between the plasma-jet tube and the surface of the object to be sterilized can be also adjusted in the vertical direction.In this way,motors are used to move the plasma jet and achieve automatic,efficient,and accurate plasma sterilization.It was found that a good sterilization effect could be achieved at both the culture-medium level and the biological-tissue level.The ideal sterilization parameters at the culture-medium level were a speed of 2 mm/s and aflow rate of 0.6 slm,while at the biological-tissue level,these values were 1 mm/s and 0.6 slm,respectively.展开更多
Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effec...Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.展开更多
Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The go...Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The goal is to standardize the selection of loading conditions for this sterilization method and avoid positive biological monitoring results.Methods:Physical monitoring,Class I chemical indicator card monitoring,Class IV chemical indicator card monitoring,and biological monitoring were used to monitor the hydrogen peroxide low-temperature plasma sterilization process.The sterilization effect on instruments inside the Johnson&Johnson 100S plasma sterilizer was monitored and the qualification of various monitoring methods was compared.Results:The comparison showed that when non-standard or adsorption-prone packaging materials were used,the interception rate of biological monitoring and Class IV chemical indicator cards was significantly higher than that of physical monitoring and Class I chemical indicator cards.These methods more intuitively and effectively detected sterilization failures.Conclusion:Biological monitoring and Class IV chemical indicator cards are safe,fast,accurate,and easy to interpret in hydrogen peroxide low-temperature plasma sterilization,especially for monitoring instruments inside packages.They provide a reliable basis for the release of sterilized instrument packages.Identifying the reasons for positive biological monitoring results in hydrogen peroxide low-temperature plasma sterilization and taking effective measures promptly can minimize associated risks.展开更多
Some influential factors of anther culture were studied preliminarily by conducting anther culture of the restorers of new cytoplasmic male sterile (NER). Several results were obtain from this experiment and they we...Some influential factors of anther culture were studied preliminarily by conducting anther culture of the restorers of new cytoplasmic male sterile (NER). Several results were obtain from this experiment and they were listed as follow:① MS cultrure medium with such hormones as 2,4-D 2 mg/L,6-BA 0.5 mg/L, NAA 0.5 mg/L was the best suitable for callus induction of NER. ②The difference of induction rate was significantly different between different plant age groups. From the 110th day to 141th day,the induction rate was increased with the increase of age and the difference of induction rate reached 0.01 significant difference level. The induction rate reached the highest value in the 141th day then it declined gradually. ③The combined use of 2, 4-D and 6-BA with proper increase of 2,4-D was good for inducing callus. ④The green plantlet induction rate of NER was increased when the concentration of 6-BA increased from 2 mg/L to 4 mg/L. Adding ZT from 0.5 mg/L to 2 mg/L. 6-BA would led 2.47% increase of green plantlet olantlet induction rate.展开更多
Pingxiang-dominant genic male sterile rice (PDGMSR) was the first dominant genic male sterile mutant identified in rice (Oryza sativa L.), and the corresponding dominant genic male sterile gene was designated as M...Pingxiang-dominant genic male sterile rice (PDGMSR) was the first dominant genic male sterile mutant identified in rice (Oryza sativa L.), and the corresponding dominant genic male sterile gene was designated as Ms-p. The fertility of PDGMSR can be restored by introduction of a dominant epistatic fertility restoring gene in some rice varieties. In the present study, E823, an indica inbred rice variety, restored the fertility of PDGMSR, and the genetic pattern was found to be consistent with a dominant epistatic model, therefore, the dominant epistatic fertility restorer gene was designated as Rfe. The F2 population from the cross of PDGMSR/E823 was developed to map gene Rfe. The F2 plants with the genotypes Ms-pMs-pRferfe or Ms-pms-pRferfe were used to construct a fertile pool, and the corresponding sterile plants with genotypes Ms-pMs-prferfe or Ms-pms-prferfe were used to con- struct a sterile pool. The fertility restoring gene Rfe was mapped to one side of the microsatellite markers RM311 and RM3152 on rice chromosome 10, with genetic distances of 7.9 cM and 3.6 cM, respectively. The microsatellite markers around the location of the Ms-p gene were used to finely map the Ms-p gene. The findings of this study indicated that the microsatellite markers RM171 and RM6745 flanked the Ms-p gene, and the distances were 0.3 cM and 3.0 cM, respectively. On the basis of the sequence of rice chromosome 10, the physical distance between the two markers is approximately 730 kb. These findings facilitates molecular marker-assisted selection (MAS) of genes Ms-p and Rfe in rice breeding programs, and cloning them in the future.展开更多
[Objective] This study was to use reverse genic male sterile FHS better in field production. [Method] Low energy nitrogen ion beam was taken as a mutation source to conduct mutagenic treatment for indica rice 99-02 an...[Objective] This study was to use reverse genic male sterile FHS better in field production. [Method] Low energy nitrogen ion beam was taken as a mutation source to conduct mutagenic treatment for indica rice 99-02 and the mutant FHS with special fertility that was isolated from their offspring. Some characteristics such as flowering habit and stigma exsertion rate of FHS were observed in this experiment. [Result] The reverse genic sterile rice FHS had an obvious peak flowering stage from 10:00 to 10:30, while the second peak flowering was from August 5 to August 10. Compared with PA64S, FHS flowered early and its flowering time was concentrated, showing that it is for seed propagation. The stigma exsertion rate of FHS was 85.8% and low exsertion rate was good for the purity of seed. [Conclusion] The reverse genic sterile rice FHS had good value in use, besides, it could also be used as comparison material for studying fertility alternation mechanism of photoperiod sensitive genic male sterile rice.展开更多
[Objective]Provide a theoretical basis for the popularization and application of Jiazhe 91A through the research and analysis on the advantages and characteristics of F1 generation of Jiazhe 91A combinations. [Method]...[Objective]Provide a theoretical basis for the popularization and application of Jiazhe 91A through the research and analysis on the advantages and characteristics of F1 generation of Jiazhe 91A combinations. [Method]The mid-parent heterosis,heterobeltiosis,competitive advantage and average dominance of the F1 generation of the three combinations configured by Jiazhe 91A were analyzed by the comparison and appraisal test of combinations configured by Jiazhe 91A. [Result]the panicle shape of the F1 generation of the three combinations configured by Jiazhe 91A was larger,and the panicles number was greater than its parents,the growing period was shorter than that of Shanyou 63,while the spikelets per panicle,seed setting rate and yield were higher than the control Shanyou 63,and the yield was 2.7% to 12.1% higher than Shanyou 63. [Conclusion]The sterility of Jiazhe 91A sterility was stable,and had a strong restoring ability,so it had widespread application prospects.展开更多
Histological changes that occur during microsporogenesis are documented in a gene-cytoplasmic male sterile rice ( Oryza saliva L.) line, Zhen Shan 97A, its maintainer line, Zhen Shan 97B, and the restorer line, Ce64 o...Histological changes that occur during microsporogenesis are documented in a gene-cytoplasmic male sterile rice ( Oryza saliva L.) line, Zhen Shan 97A, its maintainer line, Zhen Shan 97B, and the restorer line, Ce64 of a Mine hybrid rice production system. In the restorer line, Ce64, the developing microsporocytes have dense cytoplasm and a distinct set of circumferential microtubules around the nucleus. Successive cytokinesis results in the formation of tetrads. The microtubules within the cells of tetrads and microspores radiate from the surface of the nucleus towards the outer edge of the cytoplasm. Subsequent pollen development is normal. During the course of microspore formation tubulin speckles can be found in the cytoplasm. The general pattern of development and microtubule organization in the maintainer lined Zhen Shan 97B, is similar to Ce64, except that a few more tubulin speckles appear during microspore formation. In the case of the mate sterile line, Zhen Shan 97A, a number of abnormalities can be discerned during early microsporogenesis. These include vacuoles forming within the developing microsporocyte and faintly stained microtubules with no defined distribution pattern. Prominent tubulin speckles are common within the cytoplasm. For those microsporocytes that undergo meiosis, no defined organizational patterns of microtubules can be found within the tetrad. All microspores abort soon after. Abnormalities and defects in microtubule organization observed in Zhen Shan 97A showed that complex interactions between the cytoplasm and the nucleus began at very early stage of microsporocyte development.展开更多
The immunohistochemical localization of IAA and the comparison of their relative levels were carried out for the first time in the anthers of Nongken 58S and its wild type Nongken 58 (Oryza sativa subsp. japonica) af...The immunohistochemical localization of IAA and the comparison of their relative levels were carried out for the first time in the anthers of Nongken 58S and its wild type Nongken 58 (Oryza sativa subsp. japonica) after long_day and short_day treatments. The distribution of free_IAA in anthers and its dynamic variation could be reflected by this method. The results showed that the IAA level in the anthers of Nongken 58S after long_day treatment was much lower than that in short_day_treated Nongken 58S and those in wild type Nongken 58 in five stages from pistil and stamen primordia formation to late uninucleate stage. The possible reasons for IAA deficiency in Nongken 58S_LD anthers and its relationship with fertility alteration were also discussed.展开更多
基金the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY24C130004,LY22C135104,and LY23C130002)the National Natural Science Foundation of China(Grant No.31501288)+1 种基金the Open Project Program of State Key Laboratory of Rice Biology and Breeding,China(Grant No.20210207)Central Publicinterest Scientific Institution Basal Research Fund,China(Grant No.CPSIBRF-CNRRI-202203).
文摘Two-line hybrid rice with excellent quality is preferred in the Chinese market.However,there is a trade-off between reducing costs for hybrid seed production and lowering the outcrossing rate of the sterile line,which is largely determined by the stigma exsertion rate(SER).In this study,we constructed mutants of male sterility lines with improved grain length(GL)and SER in three elite early-season indica rice varieties through targeted manipulation of the TMS5 and GS3 genes using CRISPR/Cas9-mediated multiplex systems.We obtained a series of marker-free gs3 single mutants and gs3tms5 double mutants with significantly higher SER,longer grains,and increased 1000-grain weight compared with the wild type(WT).Importantly,the typically thermo-sensitive genic male sterile(TGMS)trait with a higher SER was observed in gs3tms5 mutants,and their F1 hybrids exhibited remarkable improvements in grain shape and yield-related traits.Our findings provided an efficient method to generate new valuable TGMS germplasm with improved SER through the mutagenesis of GS3 and TMS5 synergistically,and demonstrated that GS3 had pleiotropic effects on grain size,SER,and grain quality in early-season indica rice.
基金supported by the National Natural Science Foundation of China(32372118,32188102,32071993)the Qian Qian Academician Workstation,Specific Research Fund of the Innovation Platform for Academicians in Hainan Province(YSPTZX202303)+1 种基金Key Research and Development Program of Zhejiang Province(2021C02056)Hainan Seed Industry Laboratory,China(B21HJ0220)。
文摘The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in rice are far from established.Here,we isolated rice gene,AGL1 that controlled grain size and determines the fate of the sterile lemma.Loss of function of AGL1 produced larger grains and reduced the size of the sterile lemma.Larger grains in the agl1 mutant were caused by a larger number of cells that were longer and wider than in the wild type.The sterile lemma in the mutant spikelet was converted to a rudimentary glume-like organ.Our findings showed that the AGL1(also named LAX1)protein positively regulated G1 expression,and negatively regulated NSG1 expression,thereby affecting the fate of the sterile lemma.Taken together,our results revealed that AGL1 played a key role in negative regulation of grain size by controlling cell proliferation and expansion,and supported the opinion that rudimentary glume and sterile lemma in rice are homologous organs.
文摘Objective:To analyze the effect of quality control circle on the central sterile supply department(CSSD).Methods:The control group and the observation group each consisted of 180 instruments received by the sterilization supply center from January to March 2023 and 11 CSSD staff.The control group underwent routine management while quality control circle was implemented in the observation group.The quality of work,disinfection and sterilization qualification rates,disinfection and sterilization of various instruments,cleaning indicators,and management satisfaction of both groups were compared.Results:The observation group scored higher in terms of work quality,the qualification rate of disinfection and sterilization in each link,the disinfection and sterilization of instruments,and cleaning indicators compared to the control group.Besides,the management satisfaction of the observation group was higher than that of the control group(P<0.05).Conclusion:A quality control circle ensures the quality of work,improves the cleaning,disinfection,and sterilization of instruments of the CSSD,and improves the management satisfaction of the CSSD staff.
基金This research was financially supported by the Ministry of Science and Technology of China(2022YFF1003101)the National Natural Science Foundation of China(31530065,31820103011,32202451)the Foundation of Hubei Hongshan Laboratory(2021hszd009).
文摘Cytoplasmic male sterility(CMS)has long been used to produce seedless fruits in perennial woody crops like citrus.A male-sterile somatic cybrid citrus(G1+HBP)was generated by protoplast fusion between a CMS callus parent‘Guoqing No.1’Satsuma mandarin(Citrus unshiu,G1)and a fertile mesophyll parent Hirado Buntan pummelo(Citrus grandis,HBP).To uncover the male-sterile mechanism of G1+HBP,we compared the transcriptome profiles of stamen organ and cell types at five stages between G1+HBP and HBP,including the initial stamen primordia,enlarged stamen primordia,pollen mother cells,tetrads,and microspores captured by laser microdissection.The stamen organ and cell types showed distinct gene expression profiles.A majority of genes involved in stamen development were differentially expressed,especially CgAP3.2,which was downregulated in enlarged stamen primordia and upregulated in tetrads of G1+HBP compared with HBP.Jasmonic acid-and auxin-related biological processes were enriched among the differentially expressed genes of stamen primordia,and the content of jasmonic acid biosynthesis metabolites was higher in flower buds and anthers of G1+HBP.In contrast,the content of auxin biosynthesis metabolites was lower in G1+HBP.The mitochondrial tricarboxylic acid cycle and oxidative phosphorylation processes were enriched among the differentially expressed genes in stamen primordia,meiocytes,and microspores,indicating the dysfunction of mitochondria in stamen organ and cell types of G1+HBP.Taken together,the results indicate that malfunction of mitochondria-nuclear interaction might cause disorder in stamen development,and thus lead to male sterility in the citrus cybrid.
文摘Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.
基金supported by National Natural Science Foundation of China(Nos.52077129 and 52277150)the Natural Science Foundation of Shandong Province(No.ZR2022ME037).
文摘Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.
文摘The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming.
基金We thank the Wuhan Major Project of Key Technologies in Biological Breeding and New Variety Cultivation,China(2022021302024852)The Science and Technology Support Project of Rural Vitalization in Hubei Province,China(2022BBA121)+1 种基金the Key Research and Development Project of Hubei Province,China(2021BBA097)The Key Research and Development Project of Hubei Province,China(2021BBA102)。
文摘The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa are still largely unclear.We previously obtained the natural male sterile line WS24-3 of non-heading Chinese cabbage and located the male sterile locus,Bra2Ms,on the A2 chromosome.Cytological observations revealed that the male sterility of WS24-3 resulted from disruption of the meiosis process during pollen formation.Fine mapping of Bra2Ms delimited the locus within a physical distance of about 129 kb on the A2 chromosome of B.rapa.The Bra039753 gene encodes a plant homeodomain(PHD)-finger protein and is considered a potential candidate gene for Bra2Ms.Bra039753 was significantly downregulated in sterile line WS24-3 compared to the fertile line at the meiotic anther stage.Sequence analysis of Bra039753 identified a 369 bp fragment insertion in the first exon in male sterile plants,which led to an amino acid insertion in the Bra039753 protein.In addition,the 369 bp fragment insertion was found to cosegregate with the male sterility trait.This study identified a novel locus related to male sterility in non-heading Chinese cabbage,and the molecular marker obtained in this study will be beneficial for the marker-assisted selection of excellent sterile lines in non-heading Chinese cabbage and other Brassica crops.
基金supported by the National Natural Science Foundation of China(Nos.22176145,82172612)the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF 2001)the Fundamental Research Funds for the Central Universities(22120210137).
文摘The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.
基金supported by the Fund for the Biological Breeding-Major Projects in National Science and Technology(2023ZD04038)the Key Project for Agricultural Breakthrough in Core Technology of Xinjiang Production and Construction Crops(NYHXGG,2023AA102)the Key Project for Science and Technology Development of Shihezi city,Xinjiang Production and Construction Crops(2022NY01)。
文摘Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been produced due to several challenges,like inadequate variation of agronomic traits,incomplete sterility,weak resilience of restorer lines,and difficulty in combining strong dominance.Therefore,the morphological and cytological identification of CMS in cotton will facilitate hybrid breeding.Results Two F_(2) segregating populations of cotton were constructed from cytoplasmic male sterile lines(HaA and 01A,maternal)and restorer lines(HaR and 26R,paternal).Genetic analysis of these populations revealed a segregation ratio of 3:1 for fertile to sterile plants.Phenotypic analysis indicated no significant differences in traits of flower bud development between sterile and fertile plants.However,sterile plants exhibited smaller floral organs,shortened filament lengths,and anther atrophy on the flowering day in comparison with the fertile plants.When performed scanning electron microscopy(SEM),the two F_(2) populations revealed morphological variations in the anther epidermis.Cellular analysis showed no significant differences in pollen development before pollen maturation.Interestingly,between the pollen maturation and flowering stages,the tapetum layer of sterile plants degenerated prematurely,resulting in abnormal pollen grains and gradual pollen degradation.Conclusion The results of this study suggest that fertility-restoring genes are controlled by a single dominant gene.Sterile plants exhibit distinctive floral morphology,which is characterized by stamen atrophy and abnormal anthers.Pollen abortion occurs between pollen maturity and flowering,indicating that premature tapetum degradation may be the primary cause of pollen abortion.Overall,our study provides a theoretical basis for utilizing CMS in hybrid breeding and in-depth investigation of the dominant configuration of cotton hybrid combinations,mechanisms of sterility,and the role of sterile and restorer genes.
文摘Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts of ozone in the air through lightning to purify the ecological environment. The product of ozone decomposition is oxygen, without secondary pollution. Ozone sterilizer is widely used in the epidemic prevention and control of intensive breeding farms and achieved remarkable results. If the concentration and action time of ozone can be accurately controlled, then ozone can quickly eliminate pathogens, without harming the normal cells in the human body. How to use medical ozone for epidemic prevention, treatment and health care is a subject worthy of serious study, which should arouse the attention of the experts in the field.
基金supported by:the National Natural Science Foundation of China under Grant Nos.62163009 and 61864001the Natural Science Foundation of Guangxi Province under Grant No.2021JJD170019+1 种基金the Foundation of Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Guilin University of Electronic Technology)under Grant No.YQ23103the Innovation Project of Guangxi Graduate Education under Grant No.YCSW2022277.
文摘There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with wound-edge recognition was developed using afield-programmable gate array(FPGA)and a high-performance image-processing platform to realize intelligent and precise sterilization of wounds.SOLIDWORKS was used to design the mechanical structure of the device,and it was manufactured using 3D printing.The device used an improvement of the traditional Sobel detection algorithm,which extends the detection of edges in only the x and y directions to eight directions(0○,45○,90○,135○,180○,225○,270○,and 315○),completing the wound-edge detection by adaptive thresholding.The device can be controlled according to different shapes of sterilization area to adjust the positioning of a single plasma-jet tube in the horizontal plane for two-dimensional move-ment;the distance between the plasma-jet tube and the surface of the object to be sterilized can be also adjusted in the vertical direction.In this way,motors are used to move the plasma jet and achieve automatic,efficient,and accurate plasma sterilization.It was found that a good sterilization effect could be achieved at both the culture-medium level and the biological-tissue level.The ideal sterilization parameters at the culture-medium level were a speed of 2 mm/s and aflow rate of 0.6 slm,while at the biological-tissue level,these values were 1 mm/s and 0.6 slm,respectively.
文摘Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.
文摘Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The goal is to standardize the selection of loading conditions for this sterilization method and avoid positive biological monitoring results.Methods:Physical monitoring,Class I chemical indicator card monitoring,Class IV chemical indicator card monitoring,and biological monitoring were used to monitor the hydrogen peroxide low-temperature plasma sterilization process.The sterilization effect on instruments inside the Johnson&Johnson 100S plasma sterilizer was monitored and the qualification of various monitoring methods was compared.Results:The comparison showed that when non-standard or adsorption-prone packaging materials were used,the interception rate of biological monitoring and Class IV chemical indicator cards was significantly higher than that of physical monitoring and Class I chemical indicator cards.These methods more intuitively and effectively detected sterilization failures.Conclusion:Biological monitoring and Class IV chemical indicator cards are safe,fast,accurate,and easy to interpret in hydrogen peroxide low-temperature plasma sterilization,especially for monitoring instruments inside packages.They provide a reliable basis for the release of sterilized instrument packages.Identifying the reasons for positive biological monitoring results in hydrogen peroxide low-temperature plasma sterilization and taking effective measures promptly can minimize associated risks.
基金Supported by the National 863 Project of Tenth-five Year Plan(2001AA2411042004AA241104)+1 种基金Key Breeding Project of Sichuan Province and(200107001-16-01)Key Quality Project of Sichuan Province(200107001-1-7-4)~~
文摘Some influential factors of anther culture were studied preliminarily by conducting anther culture of the restorers of new cytoplasmic male sterile (NER). Several results were obtain from this experiment and they were listed as follow:① MS cultrure medium with such hormones as 2,4-D 2 mg/L,6-BA 0.5 mg/L, NAA 0.5 mg/L was the best suitable for callus induction of NER. ②The difference of induction rate was significantly different between different plant age groups. From the 110th day to 141th day,the induction rate was increased with the increase of age and the difference of induction rate reached 0.01 significant difference level. The induction rate reached the highest value in the 141th day then it declined gradually. ③The combined use of 2, 4-D and 6-BA with proper increase of 2,4-D was good for inducing callus. ④The green plantlet induction rate of NER was increased when the concentration of 6-BA increased from 2 mg/L to 4 mg/L. Adding ZT from 0.5 mg/L to 2 mg/L. 6-BA would led 2.47% increase of green plantlet olantlet induction rate.
基金Innovation Group Development Project of the Ministry of Education of China (No.IRT0435)Superexcellence Doctorial Dissertation Fund from Ministry of Education of China (No.200054).
文摘Pingxiang-dominant genic male sterile rice (PDGMSR) was the first dominant genic male sterile mutant identified in rice (Oryza sativa L.), and the corresponding dominant genic male sterile gene was designated as Ms-p. The fertility of PDGMSR can be restored by introduction of a dominant epistatic fertility restoring gene in some rice varieties. In the present study, E823, an indica inbred rice variety, restored the fertility of PDGMSR, and the genetic pattern was found to be consistent with a dominant epistatic model, therefore, the dominant epistatic fertility restorer gene was designated as Rfe. The F2 population from the cross of PDGMSR/E823 was developed to map gene Rfe. The F2 plants with the genotypes Ms-pMs-pRferfe or Ms-pms-pRferfe were used to construct a fertile pool, and the corresponding sterile plants with genotypes Ms-pMs-prferfe or Ms-pms-prferfe were used to con- struct a sterile pool. The fertility restoring gene Rfe was mapped to one side of the microsatellite markers RM311 and RM3152 on rice chromosome 10, with genetic distances of 7.9 cM and 3.6 cM, respectively. The microsatellite markers around the location of the Ms-p gene were used to finely map the Ms-p gene. The findings of this study indicated that the microsatellite markers RM171 and RM6745 flanked the Ms-p gene, and the distances were 0.3 cM and 3.0 cM, respectively. On the basis of the sequence of rice chromosome 10, the physical distance between the two markers is approximately 730 kb. These findings facilitates molecular marker-assisted selection (MAS) of genes Ms-p and Rfe in rice breeding programs, and cloning them in the future.
文摘[Objective] This study was to use reverse genic male sterile FHS better in field production. [Method] Low energy nitrogen ion beam was taken as a mutation source to conduct mutagenic treatment for indica rice 99-02 and the mutant FHS with special fertility that was isolated from their offspring. Some characteristics such as flowering habit and stigma exsertion rate of FHS were observed in this experiment. [Result] The reverse genic sterile rice FHS had an obvious peak flowering stage from 10:00 to 10:30, while the second peak flowering was from August 5 to August 10. Compared with PA64S, FHS flowered early and its flowering time was concentrated, showing that it is for seed propagation. The stigma exsertion rate of FHS was 85.8% and low exsertion rate was good for the purity of seed. [Conclusion] The reverse genic sterile rice FHS had good value in use, besides, it could also be used as comparison material for studying fertility alternation mechanism of photoperiod sensitive genic male sterile rice.
基金Supported by Major Projects of Zhejiang Province -" 8812 " Plan(2004C12020-1-6)Key Scientific and Technological Project of Jiaxing City in Zhejiang Province (2007AZ1001)~~
文摘[Objective]Provide a theoretical basis for the popularization and application of Jiazhe 91A through the research and analysis on the advantages and characteristics of F1 generation of Jiazhe 91A combinations. [Method]The mid-parent heterosis,heterobeltiosis,competitive advantage and average dominance of the F1 generation of the three combinations configured by Jiazhe 91A were analyzed by the comparison and appraisal test of combinations configured by Jiazhe 91A. [Result]the panicle shape of the F1 generation of the three combinations configured by Jiazhe 91A was larger,and the panicles number was greater than its parents,the growing period was shorter than that of Shanyou 63,while the spikelets per panicle,seed setting rate and yield were higher than the control Shanyou 63,and the yield was 2.7% to 12.1% higher than Shanyou 63. [Conclusion]The sterility of Jiazhe 91A sterility was stable,and had a strong restoring ability,so it had widespread application prospects.
文摘Histological changes that occur during microsporogenesis are documented in a gene-cytoplasmic male sterile rice ( Oryza saliva L.) line, Zhen Shan 97A, its maintainer line, Zhen Shan 97B, and the restorer line, Ce64 of a Mine hybrid rice production system. In the restorer line, Ce64, the developing microsporocytes have dense cytoplasm and a distinct set of circumferential microtubules around the nucleus. Successive cytokinesis results in the formation of tetrads. The microtubules within the cells of tetrads and microspores radiate from the surface of the nucleus towards the outer edge of the cytoplasm. Subsequent pollen development is normal. During the course of microspore formation tubulin speckles can be found in the cytoplasm. The general pattern of development and microtubule organization in the maintainer lined Zhen Shan 97B, is similar to Ce64, except that a few more tubulin speckles appear during microspore formation. In the case of the mate sterile line, Zhen Shan 97A, a number of abnormalities can be discerned during early microsporogenesis. These include vacuoles forming within the developing microsporocyte and faintly stained microtubules with no defined distribution pattern. Prominent tubulin speckles are common within the cytoplasm. For those microsporocytes that undergo meiosis, no defined organizational patterns of microtubules can be found within the tetrad. All microspores abort soon after. Abnormalities and defects in microtubule organization observed in Zhen Shan 97A showed that complex interactions between the cytoplasm and the nucleus began at very early stage of microsporocyte development.
文摘The immunohistochemical localization of IAA and the comparison of their relative levels were carried out for the first time in the anthers of Nongken 58S and its wild type Nongken 58 (Oryza sativa subsp. japonica) after long_day and short_day treatments. The distribution of free_IAA in anthers and its dynamic variation could be reflected by this method. The results showed that the IAA level in the anthers of Nongken 58S after long_day treatment was much lower than that in short_day_treated Nongken 58S and those in wild type Nongken 58 in five stages from pistil and stamen primordia formation to late uninucleate stage. The possible reasons for IAA deficiency in Nongken 58S_LD anthers and its relationship with fertility alteration were also discussed.