This paper presents a weak form quadrature element formulation in the analysis of nonlinear bifurcation and post-buckling of cylindrical composite stiffened laminates subjected to transverse loads.A total Lagrangian u...This paper presents a weak form quadrature element formulation in the analysis of nonlinear bifurcation and post-buckling of cylindrical composite stiffened laminates subjected to transverse loads.A total Lagrangian updating scheme is used in combination with arc-length method,and the branch-switching method is adopted to identify the whole post-buckling procedure of the laminates.The formulation of the shell model and beam model are based on the basic concept of Ahmad.The coincidence of discrete nodes and integration points in quadrature element endows it with compactness and conciseness in the nonlinear buckling analysis of the cylindrical stiffened laminates.Several numerical examples are firstly presented to verify the effectiveness and accuracy of present formulation.Parametric studies on the effects of the height-to-breadth ratio,lamination schemes,positions,distribution,number of the stiffeners on the bifurcation and post-buckling behavior are performed.展开更多
A study of postbuckling and delamination propagation behavior in delaminated stiffened composite plates was presented. A methodology was proposed for simulating the multi-failure responses, such as initial and postbuc...A study of postbuckling and delamination propagation behavior in delaminated stiffened composite plates was presented. A methodology was proposed for simulating the multi-failure responses, such as initial and postbuckling, delamination onset and propagation, etc. A finite element analysis was conducted on the basis of the Mindlin first order shear effect theory and the von-Krmn nonlinear deformation assumption. The total energy release rate used as the criteria of delamination growth was estimated with virtual crack closure technique (VCCT). A self-adaptive grid moving technology was adopted to model the delamination growth process. Moreover, the contact effect along delamination front was also considered during the numerical simulation process. By some numerical examples, the influence of distribution and location of stiffener, configuration and size of the delamination, boundary condition and contact effect upon the delamination growth behavior of the stiffened composite plates were investigated. The method and numerical conclusion provided should be of great value to engineers dealing with composite structures.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12202148,12172136)the Natural Science Foundation of Guangdong Province(No.2021A1515010279)+1 种基金the National Science Fund for Distinguished Young Scholar(No.11925203)the Science and Technology Project of Guangzhou(No.202102020656).
文摘This paper presents a weak form quadrature element formulation in the analysis of nonlinear bifurcation and post-buckling of cylindrical composite stiffened laminates subjected to transverse loads.A total Lagrangian updating scheme is used in combination with arc-length method,and the branch-switching method is adopted to identify the whole post-buckling procedure of the laminates.The formulation of the shell model and beam model are based on the basic concept of Ahmad.The coincidence of discrete nodes and integration points in quadrature element endows it with compactness and conciseness in the nonlinear buckling analysis of the cylindrical stiffened laminates.Several numerical examples are firstly presented to verify the effectiveness and accuracy of present formulation.Parametric studies on the effects of the height-to-breadth ratio,lamination schemes,positions,distribution,number of the stiffeners on the bifurcation and post-buckling behavior are performed.
文摘A study of postbuckling and delamination propagation behavior in delaminated stiffened composite plates was presented. A methodology was proposed for simulating the multi-failure responses, such as initial and postbuckling, delamination onset and propagation, etc. A finite element analysis was conducted on the basis of the Mindlin first order shear effect theory and the von-Krmn nonlinear deformation assumption. The total energy release rate used as the criteria of delamination growth was estimated with virtual crack closure technique (VCCT). A self-adaptive grid moving technology was adopted to model the delamination growth process. Moreover, the contact effect along delamination front was also considered during the numerical simulation process. By some numerical examples, the influence of distribution and location of stiffener, configuration and size of the delamination, boundary condition and contact effect upon the delamination growth behavior of the stiffened composite plates were investigated. The method and numerical conclusion provided should be of great value to engineers dealing with composite structures.