期刊文献+
共找到143篇文章
< 1 2 8 >
每页显示 20 50 100
Protective performance of shear stiffening gel-modified foam against ballistic impact:Experimental and numerical study
1
作者 Huan Tu Haowei Yang +9 位作者 Pengzhao Xu Zhe Yang Fan Tang Cheng Dong Yuchao Chen Lei Ren Wenjian Cao Chenguang Huang Yacong Guo Yanpeng Wei 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期510-520,共11页
As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical org... As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical organs of the wear may suffer severe behind-armor blunt trauma(BABT)even though the impactor is stopped by the body armor.A type of novel composite material through incorporating shear stiffening gel(STG)into ethylene-vinyl acetate(EVA)foam is developed and used as buffer layers to reduce BABT.In this paper,the protective performance of body armors composed of fabric bulletproof layers and a buffer layer made of foam material is investigated both experimentally and numerically.The effectiveness of STG-modified EVA in damage relief is verified by ballistic tests.In parallel with the experimental study,numerical simulations are conducted by LS-DYNA®to investigate the dynamic response of each component and capture the key mechanical parameters,which are hardly obtained from field tests.To fully describe the material behavior under the transient impact,the selected constitutive models take the failure and strain rate effect into consideration.A good agreement between the experimental observations and numerical results is achieved to prove the validity of the modelling method.The tests and simulations show that the impact-induced deformation on the human body is significantly reduced by using STG-modified EVA as the buffering material.The improvement of protective performance is attributed to better dynamic properties and more outstanding energy absorption capability of the composite foam. 展开更多
关键词 Ballistic behavior Composite foam Shear stiffening gel Finite element analysis Protective mechanism
下载PDF
Approach for analyzing the ultimate strength of concrete filled steel tubular arch bridges with stiffening girder 被引量:6
2
作者 ZHANG Zhi-cheng XIE Xu +1 位作者 ZHANG He CHEN Heng-zhi 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第5期682-692,共11页
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate... A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge. 展开更多
关键词 Ultimate strength Concrete filled steel tubular (CFST) arch bridge stiffening girder Fiber model beam element Construction process
下载PDF
Experimental study on mechanical property of stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor 被引量:4
3
作者 YANG Wei-jun ZHANG Zhen-hao LIU Chen-wei 《Journal of Civil Engineering and Architecture》 2009年第3期59-69,共11页
Stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor is a new-style hollow girderless floor system. Model experimental researches of simply-supported floor and four-corners bearing floor ha... Stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor is a new-style hollow girderless floor system. Model experimental researches of simply-supported floor and four-corners bearing floor have been done on this new kind of floor system in this paper. The experiment results show that the floor system has good mechanical property such as high bearing capacity, big rigidity and good tensility. A theoretical method is presented in this paper that the stiffening-ribbed-hollow-pipe girderless floor can be analyzed by being converted equivalently to orthotropic solid slab. It is indicated that the method is correct and reasonable according to the contrast between theoretical calculated results and experimental measured results. The theoretical results coincide with the measured results well. 展开更多
关键词 stiffening ribbed hollow pipe cast-in place reinforced concrete girderless floor experiment analogous orthotropic plate RIGIDITY
下载PDF
Mechanical performance study of the retractable pier column after stiffening 被引量:1
4
作者 Yi Zhang Xiaoye Wang +3 位作者 Liming Zhao Jie Liu Nana Wang Yingying Ding 《International Journal of Coal Science & Technology》 EI CAS 2020年第4期725-739,共15页
To solve the problem that the overlapping parts of a retractable pier column are prone to damage,this paper proposed the reinforcing measure of setting a stiffener ring at the bottom of the steel pipe.To study how the... To solve the problem that the overlapping parts of a retractable pier column are prone to damage,this paper proposed the reinforcing measure of setting a stiffener ring at the bottom of the steel pipe.To study how the stiffener-ring parameters influence the mechanical properties of the pier column.12 scale model specimens(including nine specimens with stiffener-ring widths of 40,50,and 60 mm and three unstiffened comparison specimens)were tested under axial compression.Based on the test results,the specimen load-displacement,load-deflection,and load-strain curves were analyzed,and a finite-element model of a pier column under axial compression was established to determine the optimal stiffener size.The results show that setting a stiffener ring enhances the cooperative working ability between the steel pipe and the internal filling material and restrains the lateral deformation of the pier column,thereby improving the ultimate bearing capacity and overall stability of the pier column.The ultimate bearing capacity of the pier column is related to the width and thickness of the stiffener ring.The optimal size of the stiffener ring of the model pier column is 70 mm in width and 4 mm in thickness.The present research results provide a reference for designing compressible pier columns and column stiffening in mines and have important practical significance. 展开更多
关键词 Retractable pier column stiffening reinforcing Axial compression test Ultimate bearing capacity Finiteelement analysis
下载PDF
Dynamic modeling and simulation for the flexible spacecraft with dynamic stiffening 被引量:2
5
作者 李崔春 孟秀云 刘藻珍 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期305-312,共8页
A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system,the rigid flexible coupling dynami... A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system,the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystemmodeling framework. It is clearly elucidated for the first time that,dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beamand the transverse vibration deformation of the beam. The modeling approach in this paper successfully avoids problems which are caused by other popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical explanation for dynamic stiffening can't be provided. First,the continuous dynamic models of the flexible beamand the central rigid body are established via structural dynamics and angular momentumtheory respectively. Then,based on the conclusions of orthogonalization about the normal constrained modes,the finite dimensional dynamic model suitable for controller design is obtained. The numerical simulation validations showthat: dynamic stiffening is successfully incorporated into the dynamic characteristics of the first-order model established in this paper,which can indicate the dynamic responses of the rigid flexible coupling system with large overall motion accurately,and has a clear modeling mechanism,concise expressions and a good convergence. 展开更多
关键词 non-inertial coordinate system large overall motion rigid flexible coupling dynamic stiffening normal constrained mode
下载PDF
Dynamic analysis of multi-link spatial flexible manipulator arms with dynamic stiffening effects 被引量:1
6
作者 Sijia Chen Dingguo Zhang Jun Liu 《Theoretical & Applied Mechanics Letters》 2012年第6期25-30,共6页
The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of e... The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of each flexible joint is modeled as a linearly elastic torsional spring, and the mass of the joint is also considered. For the flexibility of the link, all of the stretching deformation, bending deformation and the torsional deformation are included. The complete governing equations of motion of the system are derived via the Lagrange equations. The nonlinear description of the deformation field of the flexible link is adopted in the dynamic modeling, and thus the dynamic stiffening effects are captured. Based on this model, a general-purpose software package for dynamic simulation of multi-link spatial flexible manipulator arms is developed. Several illustrative examples are given to validate the algorithm presented in this paper and to indicate that not only dynamic stiffening effects but also the flexibility of the structure has significant influence on the dynamic performance of the manipulator. 展开更多
关键词 flexible manipulator arm MULTI-LINK flexible joint flexible link dynamic stiffening
下载PDF
Withdrawing method of the stiffening tube incidentally inserted into the descending colon
7
作者 Shinsaku Fukuda Tatsuya Mikami +3 位作者 Tadashi Shimoyama Norihiro Hanabata Hideki Iwamura Akihiro Munakata 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第34期5390-5391,共2页
We experienced a very rare complication of colonoscopy,a migration of stiffening tube into the colorectum. We herein introduce a withdrawing method of migrating stiffening tube incidentally inserted into the colorectu... We experienced a very rare complication of colonoscopy,a migration of stiffening tube into the colorectum. We herein introduce a withdrawing method of migrating stiffening tube incidentally inserted into the colorectum.A 65-year-old Japanese woman underwent colonoscopy because of abdominal discomfort. We used stiffening tube to insert the scope to the proximal colon because of her redundant sigmoid colon. When withdrawing the scope,we realized that the tube was fully inside the colorectum.We could not remove the tube instantly, and it reached the splenic flexure, finally. We reinserted the scope through the migrating tube, straightened the scope, and withdrew it holding a slight angle of the scope over the proximal end of the tube. Then, we could safely remove the tube along with the scope through the anus. 展开更多
关键词 COLONOSCOPY COMPLICATION MIGRATION stiffening tube
下载PDF
Prediction of Flexural Deformation of Reinforcement Concrete Beams with Polynomial Tension Stiffening Model
8
作者 杨淑雁 刘西拉 冷予冰 《Journal of Donghua University(English Edition)》 EI CAS 2013年第2期83-89,共7页
Based on an assumption of parabolic bond stress distribution,a simplified model with quartic polynomial function of the relative slip of steel bar and surrounding concrete for reinforced concrete (RC)tensile member wa... Based on an assumption of parabolic bond stress distribution,a simplified model with quartic polynomial function of the relative slip of steel bar and surrounding concrete for reinforced concrete (RC)tensile member was proposed. The post-cracking behavior as well as tension stiffening effect was considered in the new model. The relative slip of bending member could also be determined through the extension of the new model,which could be applied to obtaining the concentrated rotations at certain sections in order to predict the flexural deformation of RC beam. Several examples of four-point bending RC beams were approached to verify the new model,and the predictions of the flexural deflections of RC beams agreed well with experimental results. The new model can be extended to the application of partially corroded RC beam. 展开更多
关键词 tension stiffening polynomial function reinforced concrete(RC) beam flexural deformation
下载PDF
Research on the stiffening girder erection sequence of three-tower suspension bridge
9
作者 Zheng Runqing Luo Xiheng 《Engineering Sciences》 EI 2012年第3期16-20,共5页
Compared to the conventional two-tower suspension bridge, the three-tower suspension bridge has obviously different characteristics in structural performance because of the extra middle tower and main span. The constr... Compared to the conventional two-tower suspension bridge, the three-tower suspension bridge has obviously different characteristics in structural performance because of the extra middle tower and main span. The construction sequence for the stiffening girder is significantly different between the three-tower suspension bridge and the two-tower suspension bridge. The tangential angle of the main cable is one of the controlling factors of the stiffening girder erection stage for a suspension bridge. According to 5 feasible cases for the stiffening girder erection scheme in Taizhou Bridge, the research about the tangential angle in each case mentioned above was made, and some factors that should be taken into account for the erection scheme of stiffening girder were pointed out. 展开更多
关键词 tangential angle of cable three-tower suspension bridge stiffening girder sequence of erection
下载PDF
Experimental Research and Finite Element Analysis on Setting Stiffening Rib of Corner Joints in Gabled Frames
10
作者 Jin Cheng Zuoquan Hong Yu Wang 《World Journal of Engineering and Technology》 2016年第3期15-21,共7页
In order to clear constructional design of corner joint, it is necessary to further investi-gate mechanical property of corner joint in gabled frames. Through static test and finite element software analysis of compar... In order to clear constructional design of corner joint, it is necessary to further investi-gate mechanical property of corner joint in gabled frames. Through static test and finite element software analysis of comparing the panel zone with and without inclined stiffener. Some conclusions are given in the article. The load displacement curves show that the capacity of oblique nodes installed within stiffening rib components is enhanced i.e. 40% more than those without stiffening rib nodes. The results reveal that in the gabled frames, the corner node with the inclined stiffening rib can improve the bearing capacity of the specimens. When the extraterritorial flange is tension, the erection of the inclined stiffening rib can prevent structural failure and improve effectually the ductility of the structure. 展开更多
关键词 Gabled Frame Corner Joints Full-Scale Experiment stiffening Rib FEM
下载PDF
A recyclable polyurethane with characteristic thermal stiffening behavior via B-N coordination with reversible B-O bonds
11
作者 Hui Xiong Linjun Zhang +1 位作者 Qi Wu Jinrong Wu 《Science China Materials》 SCIE EI CAS CSCD 2024年第10期3339-3346,共8页
Thermal softening is an inevitable process in the physical network.Polyurethane(PU),a typical commercial material,is constructed by physical networks,which undergoes the serious thermal decay on mechanical properties ... Thermal softening is an inevitable process in the physical network.Polyurethane(PU),a typical commercial material,is constructed by physical networks,which undergoes the serious thermal decay on mechanical properties at high temperature.Herein,a physically cross-linked PU with a unique thermal stiffening behavior has been developed by incorporating B–N coordination with reversible B–O bonds.The B–N coordination can significantly improve the mechanical properties of the PU.The reversible B–O bonds(temperature dependent reversible transformation between B–OH and B–O–B)are conducive to constructing more multicoordination macromolecular crosslinking points and more stable B–N coordination bonds at high temperature,endowing the PU with the special thermal stiffening behavior for the first time.Such thermal stiffening behavior compensates for the bond breakage and the network destruction caused by heat,significantly expands the rubbery plateau and delays the entire chain motion of the thermoplastic PU.As a result,the terminal flow occurs at a higher temperature up to 200°C.The modulus retention ratio of the materials is up to 87%even at 145oC,which is much higher than that of the existing PU elastomer with the physical network and even some covalent cross-link PU.Simultaneously,the physical network ensures the recyclability of the PU,and the thermal stiffening behavior is still obtained in recycled PU.This work provides a simple strategy to impart thermal stiffening behavior to the physically crosslinked PU,thereby significantly extending the operating temperature range of thermoplastic PU,which can potentially expand the scopes of PU in applications under harsh conditions. 展开更多
关键词 RECYCLABLE POLYURETHANE B-N coordination reversible B-O bonds thermal stiffening behavior
原文传递
In situ method for stress measurements in film-substrate electrodes during electrochemical processes:key role of softening and stiffening 被引量:3
12
作者 Haimei Xie Yilan Kang +2 位作者 Haibin Song Jiangang Guo Qian Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第6期1319-1335,I0004,共18页
Electrode stress is one of the main driving forces of electrochemical degradation,which is directly related to battery cycle life,thus attracting great interest.Herein,we propose an in situ method to measure bilayer s... Electrode stress is one of the main driving forces of electrochemical degradation,which is directly related to battery cycle life,thus attracting great interest.Herein,we propose an in situ method to measure bilayer stresses in film-substrate electrodes during electrochemical processes.This method consists of two parts:stress models featuring Li-dependent material modulus and in situ deformation measurements,through which electrode bilayer stresses evolution accompanied by Li-dependent material modulus can be quantitatively characterized.As application of the method,typical silicon-composite and carbon-composite film-substrate electrodes are selected for in situ mechanical measurements and experimental analysis is performed.Results show that silicon material and carbon material exhibit significant,continuous softening and stiffening,respectively.In two film-substrate electrodes,electrode material films experience compressive stress and current collector substrates undergo a tensile-to-compressive conversion across the thickness.Besides,moduli and stresses in both electrodes vary nonlinearly with capacity,presenting non-overlapping paths between lithiation and delithiation.Based on experimental data,we further demonstrate the key role of Li-dependent modulus on electrode stresses,finding that silicon material softening decreases and carbon material stiffening increases electrode stresses.The deficiencies of current stress measurement method based on Stoney equation and the applicability of our method are discussed. 展开更多
关键词 In situ measurement Stress model-Bilayer film-substrate electrodes Silicon softening Carbon stiffening Lithiation-delithiation non-overlapping
原文传递
Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system 被引量:3
13
作者 Guangrong Li Chunhua Tang Guanjun Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第6期154-163,共10页
Air plasma sprayed thermal barrier coatings(APS-TBCs)saw their wide application in high-temperaturerelated cutting-edge fields.The lamellar structure of APS-TBCs provides a significant advantage on thermal insulation.... Air plasma sprayed thermal barrier coatings(APS-TBCs)saw their wide application in high-temperaturerelated cutting-edge fields.The lamellar structure of APS-TBCs provides a significant advantage on thermal insulation.However,short life span is a major headache for APS-TBCs.This is highly related to the property changes and passive behaviors of the coatings during thermal service.Herein,a finite element model was developed to investigate the dynamic stiffening and substrate constraint on total spallation process.Results show that the stiffening accelerates the crack propagation of APS-TBCs.The driving force for crack propagation,which is characterized by strain energy release rate(SERR),is significantly enlarged.Consequently,the crack starts to propagate when the SERR exceeds the fracture toughness.In addition,the changing trends of SERR and crack propagation features are highly associated with temperatures.A higher temperature corresponds to more significant effect of stiffening on substrate constraint.In brief,temperature-dependent stiffening significantly aggravates the substrate constraint effect on APS-TBCs,which is one of the major causes for the spallation.Given that,lowering stiffening degree is essential to maintain high strain tolerance,and to further extend the life span of APS-TBCs.This understanding contributes to the development of advanced TBCs in future applications. 展开更多
关键词 Thermal barrier coatings Substrate constraint stiffening Crack propagation Structural design
原文传递
Research and optimization on laminated steel tube column-concrete beam joints with outer stiffening ring 被引量:2
14
作者 NIE JianGuo WANG YuHang TAO MuXuan 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第5期1282-1293,共12页
In practical design,the joints with outer stiffening ring were used to connect concrete beams and laminated steel tube columns.The seismic behavior of joints with outer stiffening ring with various types was studied b... In practical design,the joints with outer stiffening ring were used to connect concrete beams and laminated steel tube columns.The seismic behavior of joints with outer stiffening ring with various types was studied based on experiments.The bearing capacity,rigidity,ductility,energy dissipation capacity,deformation property and strain distribution of the joints with outer stiffening ring with various types were comprehensively evaluated based on the test results of three specimens under quasistatic cyclic loading and finite element analysis.The test results showed that the failure mode,hysteretic behavior,bearing capacity and rigidity degradation of the joints with outer stiffening ring with various types were nearly identical.Furthermore,the strain distribution of the outer stiffening ring of the three joints was nearly the same.The detailing recommendation for the outer strengthening rings was proposed for the concrete beam-laminated steel tube column joints with outer stiffening ring,in order to ensure the good seismic capacity of the joints. 展开更多
关键词 laminated steel tube column-concrete beam joint outer stiffening ring quasi-static test OPTIMIZATION
原文传递
Stiffening of sickle cell trait red blood cells under simulated strenuous exercise conditions 被引量:2
15
作者 Zhensong Xu Yi Zheng +4 位作者 Xian Wang Nadine Shehata Chen Wang Shaorong Xie Yu Sun 《Microsystems & Nanoengineering》 EI 2016年第1期38-44,共7页
The higher risk of vaso-occlusion events and sudden death for sickle-cell trait(SCT)athletes has been speculatively ascribed to SCT red blood cell(RBC)stiffening during strenuous exercise.However,the microenvironmenta... The higher risk of vaso-occlusion events and sudden death for sickle-cell trait(SCT)athletes has been speculatively ascribed to SCT red blood cell(RBC)stiffening during strenuous exercise.However,the microenvironmental changes that could induce the stiffening of SCT RBCs are unknown.To address this question,we measured the mechanical properties of and changes in SCT RBCs under deoxygenated and acidic environments,which are two typical conditions present in the circulation of athletes undertaking strenuous exercise.The results reveal that SCT RBCs are inherently stiffer than RBCs from non-SCT healthy subjects,and a lower pH further stiffens the SCT cells.Furthermore,at both normal and low pH levels,deoxygenation was found to not be the cause of the stiffness of SCT RBCs.This study confirms that the stiffening of SCT RBCs occurs at a low pH and implies that SCT RBC stiffening could be responsible for vaso-occlusion in SCT athletes during strenuous exercise. 展开更多
关键词 DEFORMABILITY MICROFLUIDICS shear modulus sickle cell trait stiffening red blood cell
原文传递
Effect of High-Performance Steel on the Tension Stiffening and Cracking Behavior of Reinforced Concrete (RC) Tension Ties
16
作者 Yun Hyun-do Lee Young-oh +1 位作者 Ryu Seung-hyun Seo Soo-yeon 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S1期812-816,共5页
In construction industry, the application of high-performance reinforcement bar is required strongly. Unfortunately, not nearly enough research has been conducted on high-performance steel in comparison with high stre... In construction industry, the application of high-performance reinforcement bar is required strongly. Unfortunately, not nearly enough research has been conducted on high-performance steel in comparison with high strength concrete. This paper describes the effect of high-performance steel as reinforcement steel bar on the tension response and cracking behavior of concrete and fiber-reinforced strain-hardening cement-based composite (SHCC) tension members. High-performance steel is characterized by higher strength in comparison to ASTM A615-06 Grade 60 steel. The tension stiffening effect on high-performance reinforcing bars embedded in cement-based composite prism is investigated experimentally. The variables in the study are types of cement-based composite (conventional concrete, synthetic fiber-reinforced cement composite), yielding strength of steel bars (400MPa and 600MPa), and types of loading (monotonic and repeated tension loading). 展开更多
关键词 crack width tension stiffening fiber-reinforced strain-hardening cement-based composite tension
原文传递
Analyzing the Form-Finding of a Large-Span Transversely Stiffened Suspended Cable System: A Method Considering Construction Processes
17
作者 Junyu Chen Yanfei Wang +2 位作者 Ke Chen Shiqing Huang Xiaowen Xu 《World Journal of Engineering and Technology》 2024年第2期229-244,共16页
The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions... The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies. 展开更多
关键词 Cable Structure Long-Span Structure Form-Finding Analysis Finite Element Simulation Transverse Cable stiffening System
下载PDF
裂纹加筋和缺口加筋对钢加筋板极限强度的影响
18
作者 Musa Bahmani Fattaneh Morshedsolouk Mohammad Reza Khedmati 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期460-469,共10页
This paper numerically evaluates the effect of the crack position on the ultimate strength of stiffened panels.Imperfections such as notches and cracks in aged marine stiffened panels can reduce their ultimate strengt... This paper numerically evaluates the effect of the crack position on the ultimate strength of stiffened panels.Imperfections such as notches and cracks in aged marine stiffened panels can reduce their ultimate strength.To investigate the effect of crack length and position,a series of nonlinear finite element analyses were carried out and two cases were considered,i.e.,case 1 with thin stiffeners and case 2 with thick stiffeners.In both cases,the stiffeners have the same cross-section area.To have a basis for comparison,the intact panels were modeled as well.The cracks and notches were in the longitudinal and transverse direction and were assumed to be in the middle part of the panel.The cracks and notches were assumed to be through the thickness and there is neither crack propagation nor contact between crack faces.Based on the numerical results,longitudinal cracks affect the behavior of the stiffened panels in the postbuckling region.When the stiffeners are thinner,they buckle first and provide no reserved strength after plate buckling.Thus,cracks in the stiffeners do not affect the ultimate strength in the case of the thinner stiffeners.Generally,when stiffeners are thicker,they affect the postbuckling behavior more.In that case,cracks in the stiffeners affect the buckling and failure modes of the stiffened panels.The effect of notch was also studied.In contrast to the longitudinal crack in stiffeners,a notch in the stiffeners reduces the ultimate strength of the stiffened panel for both slender and thick stiffeners. 展开更多
关键词 Stiffened panels CRACK NOTCH Ultimate strength BUCKLING Nonlinear finite element method
下载PDF
Buckling Optimization of Curved Grid Stiffeners through the Level Set Based Density Method
19
作者 Zhuo Huang Ye Tian +2 位作者 Yifan Zhang Tielin Shi Qi Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期711-733,共23页
Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid s... Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor. 展开更多
关键词 STIFFENER buckling optimization shape and cross section level set based density
下载PDF
Dynamic Characteristics Analysis of the Offshore Wind Turbine Blades 被引量:2
20
作者 李静 陈健云 陈小波 《Journal of Marine Science and Application》 2011年第1期82-87,共6页
The topic of offshore wind energy is attracting more and more attention as the energy crisis heightens.The blades are the key components of offshore wind turbines,and their dynamic characteristics directly determine t... The topic of offshore wind energy is attracting more and more attention as the energy crisis heightens.The blades are the key components of offshore wind turbines,and their dynamic characteristics directly determine the effectiveness of offshore wind turbines.With different rotating speeds and blade length,the rotating blades generate various centrifugal stiffening effects.To directly analyze the centrifugal stiffening effect of blades,the Rayleigh energy method (REM) was used to derive the natural frequency equation of the blade,including the centrifugal stiffening effect and the axial force calculation formula.The axial force planes and the first to third order natural frequency planes which vary with the rotating speed and length were calculated in three-dimensional coordinates.The centrifugal stiffening coefficient was introduced to quantitatively study the relationship between the centrifugal stiffening degree and the rotating speed,and then the fundamental frequency correction formula was built based on the rotating speed and the blade length.The analysis results show that the calculation results of the fundamental frequency correction formula agree with the theoretical calculation results.The error of calculation results between them is less than 0.5%. 展开更多
关键词 centrifugal stiffening effect blade dynamic characteristic stiffening coefficient natural frequency offshore wind turbine
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部