A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allow...A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.展开更多
In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or ...In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or temperature sensors.The high cost limits the spatial resolution,which ultimately affects the measuring accuracy of the ISW amplitude.In this paper,we developed an experimental measurement system for detecting ISWs based on the stimulated Raman scattering in distributed optical fibers.This system has the advantages of high precision,low cost,and easy operation.The experimental results show that the system is consistent with CTDs in the measurement of vertical ocean temperature variation.The spatial resolution of the system can reach 1.0 m and the measuring accuracy of temperature is 0.2℃.We successfully detected 3 ISWs by the system in the South China Sea and two optical remote sensing images collected on May 18,2021,the same day of two detected ISWs,verify the occurrence of the measured ISWs.We used the image pairs method to calculate the phase velocity of ISW and the result is 1.71 ms^(-1).By extracting the distances between wave packets,it can be found that the semi-diurnal tide generates the detected ISWs.The impact of the tidal current velocity on the ISW in amplitude is undeniable.Undoubtedly,the system has a great application prospect for detecting ISWs and other dynamic phenomena in the ocean.展开更多
Stimulated Raman scattering(SRS)microscopy has the ability of noninvasive imaging of specific chemical bonds and been increasingly used in biomedicine in recent years.Two pulsed Gaussian beams are used in traditional ...Stimulated Raman scattering(SRS)microscopy has the ability of noninvasive imaging of specific chemical bonds and been increasingly used in biomedicine in recent years.Two pulsed Gaussian beams are used in traditional SRS microscopes,providing with high lateral and axial spatial resolution.Because of the tight focus of the Gaussian beam,such an SRS microscopy is difficult to be used for imaging deep targets in scattering tissues.The SRS microscopy based on Bessel beams can solve the imaging problem to a certain extent.Here,we establish a theoretical model to calculate the SRS signal excited by two Bessel beams by integrating the SRS signal generation theory with the fractal propagation method.The fractal model of refractive index turbulence is employed to generate the scattering tissues where the light transport is modeled by the beam propagation method.We model the scattering tissues containing chemicals,calculate the SRS signals stimulated by two Bessel beams,discuss the influence of the fractal model parameters on signal generation,and compare them with those generated by the Gaussian beams.The results show that,even though the modeling parameters have great influence on SRS signal generation,the Bessel beams-based SRS can generate signals in deeper scattering tissues.展开更多
Stimulated raman scattering (SRS) is an effective method for expanding the spectral range of high power lasers, especially in the regime of near IR and middle IR. We report the SRS of high pressure H2 with a multipl...Stimulated raman scattering (SRS) is an effective method for expanding the spectral range of high power lasers, especially in the regime of near IR and middle IR. We report the SRS of high pressure H2 with a multiple-pass cell configuration. The SRS with the multiple-pass cell configuration is found to be very efficient for reduction of threshold of the first Stokes (S1). Due to the coherent SRS (CSRS) process, the multiple-pass cell configuration is more effective for reduction of the threshold for the second Stokes (S2) SRS and for increasing the conversion efficiency of S2. This contributes to the relatively low conversion efficiency of S1 for the multiple-pass cell configuration. Multiple-pass cell SRS is also found to be very effective for improving the beam quality and the stability of S1.展开更多
Rapid histology of brain tissues with sufficient diagnostic information has the great potential to aid neurosurgons during operations.Stimulated Raman Scattering(SRS)microscopy is an emerging label-free imaging techni...Rapid histology of brain tissues with sufficient diagnostic information has the great potential to aid neurosurgons during operations.Stimulated Raman Scattering(SRS)microscopy is an emerging label-free imaging technique,with the intrinsic chemical resolutions to delineate brain tumors from normal tissues without the nood of time-consuming tissue processing.Growing number of studies have shown SRS as a“virtual histology"tool for rapid diagnosis of various types of brain tumors.In this review,we focus on the basic principles and current developments of SRS microscopy,as well as its applications for brain tumor imaging.展开更多
Stimulated Raman scattering(SRS)excited by incoherent light is studied via particle-in-cell simulations.It is shown that a large bandwidth of incoherent light can reduce the growth of SRS and electron heating consider...Stimulated Raman scattering(SRS)excited by incoherent light is studied via particle-in-cell simulations.It is shown that a large bandwidth of incoherent light can reduce the growth of SRS and electron heating considerably in the linear stage.However,different components of the incoherent light can be coupled by the Langmuir waves,so that stimulated Raman backward scattering can develop.When the bandwidth of incoherent light is larger than the Langmuir wave frequency,forward SRS can be seeded between different components of the incoherent light.The incoherent light can only increase the time duration for nonlinear saturation but cannot diminish the saturation level obviously.展开更多
The conversion efficiency of stimulated Raman scattering (SRS) in CH4 is studied by using a single longitudinal mode second-harmonic Nd:YAG laser (532 nm, linewidth 0.003 cm^-1, pulse-width (FWHM) 6.5 ns). Due ...The conversion efficiency of stimulated Raman scattering (SRS) in CH4 is studied by using a single longitudinal mode second-harmonic Nd:YAG laser (532 nm, linewidth 0.003 cm^-1, pulse-width (FWHM) 6.5 ns). Due to the heat release from vibrationally excited particles, SRS processes often suffer from the thermal defocusing effect (TDE). In view of 6.5 ns laser pulse width is much shorter than the vibrational relaxation time of CH4 molecules, TDE can only affect the SRS processes afterwards. In the cases of low laser repetition, TDE will be not serious, because it will be removed by the thermal diffusion in Raman medium before the next pulse arrives. At the laser repetition rate 2 Hz, CH4 pressure 1.1 MPa and pump laser energy 95 mJ, the quantum conversion efficiency of backward first-Stokes (BS1) has attained 73%. This represents the highest first-stokes conversion efficiency in CH4. Furthermore, due to the relaxation oscillation, the BS1 pulses are narrowed to about 1.2 ns. As a result, the BS1 peak power turns out to be 2.7 times that of the pump. Its beam quality is also much better and is only slightly affected by TDE. This reason is that BS1 represents a wave-front-reversed replica of the pump beam, which can compensate the thermal distortions in Raman amplify process. Under the same conditions, but pump laser repetition rate as 10 Hz, the conversion efficiency of BS1 goes down to 36% due to TDE. From this study, we expect that a well-behaved 630 nm Raman laser may be designed by using a closed CH4/He circulating-cooling system, which may have some important applications.展开更多
The system of nonlinear equations modeling the process of nonstationary stimulated Raman scattering (SRS) in noncentrosymmetric crystals for the waves on laser, Stokes, polariton, and phonon frequencies is investigate...The system of nonlinear equations modeling the process of nonstationary stimulated Raman scattering (SRS) in noncentrosymmetric crystals for the waves on laser, Stokes, polariton, and phonon frequencies is investigated by using the numerical methods. The general case for amplitudes of waves that resulted in doubling of the number of equations is considered. It is shown that the application of the methods of finite differences to the computer simulation of transition regimes is completely consistent with the analytical results found for the asymptotical solutions in form of solitons. The obtained results also indicate that the laser pulses of Gaussian shape appearing at the boundary of nonlinear medium tend to become solitons of Lorentzian shape. It was also found that the formation of solitons occurs when the vibrations of optical phonons and that of electromagnetic wave were either in or out of phase. It is shown that all electromagnetic waves entering the medium with different speeds become solitons having the same speed. In the second part of the paper we considered the computer simulation of soliton stability with respect to small (weak) perturbations of all interacting waves. In the present paper we considered the case of evolution of those disturbances in the vicinity of peaks of solitons. The numerical analysis showed that in wide range of parameters the solitons were stable.展开更多
The acetic acid-water binary system is a classical hydroxy-carboxy mixed system, while new and interesting phenomena appear under stimulated Raman scattering(SRS).Compared with the weaker signal of the acetic acid-wat...The acetic acid-water binary system is a classical hydroxy-carboxy mixed system, while new and interesting phenomena appear under stimulated Raman scattering(SRS).Compared with the weaker signal of the acetic acid-water binary system obtained in spontaneous Raman scattering, SRS provides a finer band and a relatively distinct structural transition point.The structural transformation points are respectively at 30% and 80% by volume ratio under the condition of spontaneous Raman spectroscopy, while they are respectively at 15% and 25% under the condition of SRS.This phenomenon is attributed to the generation of laser induced plasma and shockwave induced dynamic high pressure environment during SRS.展开更多
For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain sa...For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain saturation powers in DFRAs with various pump schemes are obtained by calculating SBS thresholds in them, and the experimental results show that they are in excellent agreement with the calculation results. The saturation power of the DFRA with a 300 m W forward pump is as low as 0 d Bm, which needs to be enhanced by phase modulation, and the effect is quantitatively studied. A simple model taking both modulation frequency and index into consideration is presented by introducing a correction factor to evaluate the effect of phase modulation on the enhancement of saturation power. Experimentally, it is shown that such a correction factor decreases as the modulation frequency increases and approaches zero when the modulation frequency becomes high enough. In particular, a phase modulation with a modulation frequency of 100 MHz and a modulation index of 1.380 can enhance the saturation power by 4.44 d B, and the correction factor is 0.25 d B, in which the modulation frequency is high enough. Additionally, the factor is 1.767 d B for the modulation frequency of 25 MHz. On this basis,phase modulations with various indexes and a fixed frequency of 25 MHz are adopted to verify the modified model, and the results are positive. To obtain the highest gain saturation power, the model is referable. The research results provide a guide for the design of practical DFRAs.展开更多
Stimulated Raman particle-in-cell (PIC) simulations scattering (SRS) in a low-density The backward stimulated Raman plasma slab is investigated by scattering (B-SRS) dominates initially and erodes the head of th...Stimulated Raman particle-in-cell (PIC) simulations scattering (SRS) in a low-density The backward stimulated Raman plasma slab is investigated by scattering (B-SRS) dominates initially and erodes the head of the pump wave, while the forward stimulated Raman scattering (F-SRS) subsequently develops and is located at the rear part of the slab. Two-stage electron acceleration may be more efficient due to the coexistence of these two instabilities. The B-SRS plasma wave with low phase velocities can accelerate the background electrons which may be further boosted to higher energies by the F-SRS plasma wave with high phase velocities. The simulations show that the peaks of the main components in both the frequency and wave number spectra occur at the positions estimated from the phase-matching conditions.展开更多
The competition between the stimulated resonance Raman scattering (SRRS) of Rhodamine B (RhB) and the stimulated Raman scattering (SRS) of ethanol (C2H50H) is observed at the RhB in C2H5OH solution. For differ...The competition between the stimulated resonance Raman scattering (SRRS) of Rhodamine B (RhB) and the stimulated Raman scattering (SRS) of ethanol (C2H50H) is observed at the RhB in C2H5OH solution. For different concentrations of the solution, the peak wavelengths of the SRRS, the amplified spontaneous emission (ASE), the fluorescence and the absorption of RhB are different. The SRRS of RhB and the SRS of C2H50H are simultaneously generated when the concentration of the solution is 10-5 mol/L and the energy of the excitation laser is 20.4 mJ. Otherwise, only either the SRRS of RhB or the SRS of C2H5OH is generated. The SRRS can be amplified by the ASE gain when the SRRS is near the peak of the ASE, and the peak wavelength of the SRRS coincides with the wavelength of the maximal intensity ASE.展开更多
Stimulated Raman scattering(SRS)is one of the main instabilities affecting success of fusion ignition.Here,we study the relationship between Raman growth and Landau damping with various distribution functions combinin...Stimulated Raman scattering(SRS)is one of the main instabilities affecting success of fusion ignition.Here,we study the relationship between Raman growth and Landau damping with various distribution functions combining the analytic formulas and Vlasov simulations.The Landau damping obtained by Vlasov-Poisson simulation and Raman growth rate obtained by Vlasov-Maxwell simulation are anti-correlated,which is consistent with our theoretical analysis quantitatively.Maxwellian distribution,flattened distribution,and bi-Maxwellian distribution are studied in detail,which represent three typical stages of SRS.We also demonstrate the effects of plateau width,hot-electron fraction,hot-to-cold electron temperature ratio,and collisional damping on the Landau damping and growth rate.They gives us a deep understanding of SRS and possible ways to mitigate SRS through manipulating distribution functions to a high Landau damping regime.展开更多
Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the...Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the plasma density,electron temperature,and magnetic field intensity.One-dimensional particle-in-cell simulations are carried out to examine the kinetic evolution of SRS under low magnetic intensity of w_c/w_0<0.01.There are two density regions distinguished in which the absolute growth of enveloped electrostatic waves and spectrum present quite different characteristics.In a relatively low-density plasma(ne~0.20 nc),the plasma wave presents typical absolute growth and the magnetic field alleviates linear SRS.While in the plasma whose density is near the cut-off point(ne~0.23 nc),the magnetic field induces a spectral splitting of the backscattering and forward-scattering waves.It has been observed in simulations and verified by theoretical analysis.Due to this effect,the onset of reflectivity delays,and the plasma waves form high-frequency oscillation and periodic envelope structure.The split wavenumber Dk/k0 is proportional to the magnetic field intensity and plasma density.These studies provide novel insight into the kinetic behavior of SRS in magnetized plasmas.展开更多
The purpose of this article is to consider two aspects of the nonstationary stimulated Raman scattering by polaritons in cubic crystals. The first feature is related to the pump field, which, by deforming the permitti...The purpose of this article is to consider two aspects of the nonstationary stimulated Raman scattering by polaritons in cubic crystals. The first feature is related to the pump field, which, by deforming the permittivity of the medium, changes its symmetry. As a result, for example, the cubic crystal becomes anisotropic. The second one results from the possibility of exciting anomalous longitudinal waves at the frequency of the mechanical phonons which is the fundamental difference between scattering by dipole-active (polar) phonons and that of by dipole-inactive (nonpolar) ones. When the phonon frequency is approached, the amplitude of the transverse polariton wave decreases due to increased absorption and the wave mismatch. The polariton wave becomes practically longitudinal. Such a wave is maintained by the pump field and exists only in a pumped medium. The system of four shortened nonstationary equations (two for the Stokes waves with perpendicular polarizations and two for both transverse and longitudinal polariton waves) is obtained. The analysis is carried out for a given stationary pump field which is assumed to be a linearly polarized plane electromagnetic wave. Principal attention was paid to the calculation and analysis of the gain factor which defines the intensities of both stimulated (SRS) and spontaneous Raman scattering. The expressions for two proper gain factors gμ are obtained for Stokes waves in nonstationary case. It was shown that the pumped cubic crystal becomes anisotropic. It is also shown that the values of intensities calculated by using the expression for gμ are consistent with the experimental results for spectra of ZnS.展开更多
The system of equations simulating the processes of nonstationary stimulated Raman scattering (SRS) with the excitation of polar optical phonons is obtained. This system is found by applying such standard methods as t...The system of equations simulating the processes of nonstationary stimulated Raman scattering (SRS) with the excitation of polar optical phonons is obtained. This system is found by applying such standard methods as the nonstationary theory of perturbations, which resulted in the equations for the amplitudes of probabilities to find the discrete system in certain state, and slowly-varying amplitudes for the electromagnetic waves. It has been shown that the obtained system includes, as extremes, the case of classical interaction between electromagnetic field and resonant medium (including the “area theorem”), and the one related with SRS on optical phonons. We have conducted both theoretical and numerical investigation of simplified system assuming that the amplitudes of all electromagnetic waves (laser, Stokes, and polariton) were real (there was no destructive spatial-temporal phase modulation). Only low-order nonlinear processes are considered. It is shown that this system can be reduced to Sine-Gordon equation. This system can also be simplified to the equation that simulates the motion of physical pendulum from upper equilibrium position. The numerical study of nonstationary SRS when the electromagnetic field of laser radiation and Stokes excite both polariton emission and the continuum of dipole-active phonons has been carried out. The evolution of the intensity of the polariton wave as function of the length of nonlinear medium has been numerically analyzed.展开更多
We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power...We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power amplifier system. The cascaded SRS is achieved by using a long passive fiber pumped by a pulsed fiber laser cen: tered at wavelength 1064 nm. The amplified spontaneous emission during the amplification process is efficiently suppressed by cutting the length of the passive fiber and by using a double-clad ytterbium-doped fiber amplifier. The generated broadband spectrum spans from 960nm to 1700nm with maximum average output 13.6 W and average spectral power density approximately 17. 7 mW/nm.展开更多
When the film is excited by a very low excitation energy, thespontaneous Raman scattering emerges. The intensity of Ramanscattering is proportional to the Excitation power below thethreshold excitation. When the excit...When the film is excited by a very low excitation energy, thespontaneous Raman scattering emerges. The intensity of Ramanscattering is proportional to the Excitation power below thethreshold excitation. When the excited power reaches the Excitationthreshold, the intensity of Stokes light strongly increases.Meanwhile an anti- Stokes light at 495 nm and multiple order butsmall Stokes peaks occur. The intensity of Stokes light is muchlarger than that of anti-Stokes.展开更多
Expressions are obtained for the shortened Maxwell’s equations simulating the evolution of the ultrashort pulses propagating in anisotropic dipole-active crystals in stimulated Raman scattering (SRS) by polaritons. T...Expressions are obtained for the shortened Maxwell’s equations simulating the evolution of the ultrashort pulses propagating in anisotropic dipole-active crystals in stimulated Raman scattering (SRS) by polaritons. The developed theory considers the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is approximated by a linearly polarized plane electromagnetic wave. The possibility of simultaneous propagation of pulses on both different frequencies (pump and Stokes) and different polarization (simultons) is theoretically shown. It is also shown that the expression for the gain factor g in SRS is consistent with the experimental results for the spectra of ZnS.展开更多
Three-dimensional(3D)imaging is essential for understanding intricate biological and biomedical systems,yet live cell and tissue imaging applications still face challenges due to constrained imaging speed and strong s...Three-dimensional(3D)imaging is essential for understanding intricate biological and biomedical systems,yet live cell and tissue imaging applications still face challenges due to constrained imaging speed and strong scattering in turbid media.Here,we present a unique phase-modulated stimulated Raman scattering tomography(PM-SRST)technique to achieve rapid label-free 3D chemical imaging in cells and tissue.To accomplish PM-SRST,we utilize a spatial light modulator to electronically manipulate the focused Stokes beam along the needle Bessel pump beam for SRS tomography without the need for mechanical z scanning.We demonstrate the rapid 3D imaging capability of PM-SRST by real-time monitoring of 3D Brownian motion of polystyrene beads in water with 8.5 Hz volume rate,as well as the instant biochemical responses to acetic acid stimulants in MCF-7 cells.Further,combining the Bessel pump beam with a longer wavelength Stokes beam(NIR-II window)provides a superior scattering resilient ability in PM-SRST,enabling rapid tomography in deeper tissue areas.The PM-SRST technique providestwofold enhancement in imaging depth in highly scattering media(e.g.,polymer beads phantom and biotissue like porcine skin and brain tissue)compared with conventional point-scan SRS.We also demonstrate the rapid 3D imaging ability of PM-SRST by observing the dynamic diffusion and uptake processes of deuterium oxide molecules into plant roots.The rapid PM-SRST developed can be used to facilitate label-free 3D chemical imaging of metabolic activities and functional dynamic processes of drug delivery and therapeutics in live cells and tissue.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975059 and 12005021)。
文摘A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.
基金National Natural Science Foundation of China(Nos.61871353,62031005)。
文摘In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or temperature sensors.The high cost limits the spatial resolution,which ultimately affects the measuring accuracy of the ISW amplitude.In this paper,we developed an experimental measurement system for detecting ISWs based on the stimulated Raman scattering in distributed optical fibers.This system has the advantages of high precision,low cost,and easy operation.The experimental results show that the system is consistent with CTDs in the measurement of vertical ocean temperature variation.The spatial resolution of the system can reach 1.0 m and the measuring accuracy of temperature is 0.2℃.We successfully detected 3 ISWs by the system in the South China Sea and two optical remote sensing images collected on May 18,2021,the same day of two detected ISWs,verify the occurrence of the measured ISWs.We used the image pairs method to calculate the phase velocity of ISW and the result is 1.71 ms^(-1).By extracting the distances between wave packets,it can be found that the semi-diurnal tide generates the detected ISWs.The impact of the tidal current velocity on the ISW in amplitude is undeniable.Undoubtedly,the system has a great application prospect for detecting ISWs and other dynamic phenomena in the ocean.
基金This work was supported in part by the National Key R&D Program of China under Grant No.2018YFC0910600the National Natural Science Foundation of China under Grant Nos.81871397,81627807,11727813,91859109+2 种基金the Shaanxi Science Fund for Distinguished Young Scholars under Grant No.2020JC-27the Shaanxi Young Top-notch Talent of"Special Support Program"the Best Funded Projects for the Scientific and Technological Activities for Excellent Overseas Researchers in Shaanxi Province(2017017)..
文摘Stimulated Raman scattering(SRS)microscopy has the ability of noninvasive imaging of specific chemical bonds and been increasingly used in biomedicine in recent years.Two pulsed Gaussian beams are used in traditional SRS microscopes,providing with high lateral and axial spatial resolution.Because of the tight focus of the Gaussian beam,such an SRS microscopy is difficult to be used for imaging deep targets in scattering tissues.The SRS microscopy based on Bessel beams can solve the imaging problem to a certain extent.Here,we establish a theoretical model to calculate the SRS signal excited by two Bessel beams by integrating the SRS signal generation theory with the fractal propagation method.The fractal model of refractive index turbulence is employed to generate the scattering tissues where the light transport is modeled by the beam propagation method.We model the scattering tissues containing chemicals,calculate the SRS signals stimulated by two Bessel beams,discuss the influence of the fractal model parameters on signal generation,and compare them with those generated by the Gaussian beams.The results show that,even though the modeling parameters have great influence on SRS signal generation,the Bessel beams-based SRS can generate signals in deeper scattering tissues.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11304311 and 11475177
文摘Stimulated raman scattering (SRS) is an effective method for expanding the spectral range of high power lasers, especially in the regime of near IR and middle IR. We report the SRS of high pressure H2 with a multiple-pass cell configuration. The SRS with the multiple-pass cell configuration is found to be very efficient for reduction of threshold of the first Stokes (S1). Due to the coherent SRS (CSRS) process, the multiple-pass cell configuration is more effective for reduction of the threshold for the second Stokes (S2) SRS and for increasing the conversion efficiency of S2. This contributes to the relatively low conversion efficiency of S1 for the multiple-pass cell configuration. Multiple-pass cell SRS is also found to be very effective for improving the beam quality and the stability of S1.
基金supports from the National Key Research and Development Program of China (2016YFC0102100,2016YFA0301000,2016YFA0203900)National Natural Science Foundation of China (81671725)+1 种基金Shanghai Rising Star Program (15QA1400500)Shanghai Action Plan for Scientific and Technological Innovation Program (16441909200).
文摘Rapid histology of brain tissues with sufficient diagnostic information has the great potential to aid neurosurgons during operations.Stimulated Raman Scattering(SRS)microscopy is an emerging label-free imaging technique,with the intrinsic chemical resolutions to delineate brain tumors from normal tissues without the nood of time-consuming tissue processing.Growing number of studies have shown SRS as a“virtual histology"tool for rapid diagnosis of various types of brain tumors.In this review,we focus on the basic principles and current developments of SRS microscopy,as well as its applications for brain tumor imaging.
基金This work was supported in part by the National Science Foundation of China(Grant Nos.11421064,11374209,11405107 and 11374210).
文摘Stimulated Raman scattering(SRS)excited by incoherent light is studied via particle-in-cell simulations.It is shown that a large bandwidth of incoherent light can reduce the growth of SRS and electron heating considerably in the linear stage.However,different components of the incoherent light can be coupled by the Langmuir waves,so that stimulated Raman backward scattering can develop.When the bandwidth of incoherent light is larger than the Langmuir wave frequency,forward SRS can be seeded between different components of the incoherent light.The incoherent light can only increase the time duration for nonlinear saturation but cannot diminish the saturation level obviously.
文摘The conversion efficiency of stimulated Raman scattering (SRS) in CH4 is studied by using a single longitudinal mode second-harmonic Nd:YAG laser (532 nm, linewidth 0.003 cm^-1, pulse-width (FWHM) 6.5 ns). Due to the heat release from vibrationally excited particles, SRS processes often suffer from the thermal defocusing effect (TDE). In view of 6.5 ns laser pulse width is much shorter than the vibrational relaxation time of CH4 molecules, TDE can only affect the SRS processes afterwards. In the cases of low laser repetition, TDE will be not serious, because it will be removed by the thermal diffusion in Raman medium before the next pulse arrives. At the laser repetition rate 2 Hz, CH4 pressure 1.1 MPa and pump laser energy 95 mJ, the quantum conversion efficiency of backward first-Stokes (BS1) has attained 73%. This represents the highest first-stokes conversion efficiency in CH4. Furthermore, due to the relaxation oscillation, the BS1 pulses are narrowed to about 1.2 ns. As a result, the BS1 peak power turns out to be 2.7 times that of the pump. Its beam quality is also much better and is only slightly affected by TDE. This reason is that BS1 represents a wave-front-reversed replica of the pump beam, which can compensate the thermal distortions in Raman amplify process. Under the same conditions, but pump laser repetition rate as 10 Hz, the conversion efficiency of BS1 goes down to 36% due to TDE. From this study, we expect that a well-behaved 630 nm Raman laser may be designed by using a closed CH4/He circulating-cooling system, which may have some important applications.
文摘The system of nonlinear equations modeling the process of nonstationary stimulated Raman scattering (SRS) in noncentrosymmetric crystals for the waves on laser, Stokes, polariton, and phonon frequencies is investigated by using the numerical methods. The general case for amplitudes of waves that resulted in doubling of the number of equations is considered. It is shown that the application of the methods of finite differences to the computer simulation of transition regimes is completely consistent with the analytical results found for the asymptotical solutions in form of solitons. The obtained results also indicate that the laser pulses of Gaussian shape appearing at the boundary of nonlinear medium tend to become solitons of Lorentzian shape. It was also found that the formation of solitons occurs when the vibrations of optical phonons and that of electromagnetic wave were either in or out of phase. It is shown that all electromagnetic waves entering the medium with different speeds become solitons having the same speed. In the second part of the paper we considered the computer simulation of soliton stability with respect to small (weak) perturbations of all interacting waves. In the present paper we considered the case of evolution of those disturbances in the vicinity of peaks of solitons. The numerical analysis showed that in wide range of parameters the solitons were stable.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574113,11374123,and 11104106)Science and Technology Planning Project of Jilin Province,China(Grant Nos.20180101238JC,20170204076GX,20180101006JC,20190103041JH,and 20190201260JC)Post-Doctoral Innovative Talent Support Program,China(Grant Nos.BX20180127 and 2019M651192)
文摘The acetic acid-water binary system is a classical hydroxy-carboxy mixed system, while new and interesting phenomena appear under stimulated Raman scattering(SRS).Compared with the weaker signal of the acetic acid-water binary system obtained in spontaneous Raman scattering, SRS provides a finer band and a relatively distinct structural transition point.The structural transformation points are respectively at 30% and 80% by volume ratio under the condition of spontaneous Raman spectroscopy, while they are respectively at 15% and 25% under the condition of SRS.This phenomenon is attributed to the generation of laser induced plasma and shockwave induced dynamic high pressure environment during SRS.
基金Project supported by the National Natural Science Foundation of China(Grant No.61177073)the Major Application Basic Research Project of National University of Defense Technology,China(Grant No.ZDYYJCYJ20140701)
文摘For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain saturation powers in DFRAs with various pump schemes are obtained by calculating SBS thresholds in them, and the experimental results show that they are in excellent agreement with the calculation results. The saturation power of the DFRA with a 300 m W forward pump is as low as 0 d Bm, which needs to be enhanced by phase modulation, and the effect is quantitatively studied. A simple model taking both modulation frequency and index into consideration is presented by introducing a correction factor to evaluate the effect of phase modulation on the enhancement of saturation power. Experimentally, it is shown that such a correction factor decreases as the modulation frequency increases and approaches zero when the modulation frequency becomes high enough. In particular, a phase modulation with a modulation frequency of 100 MHz and a modulation index of 1.380 can enhance the saturation power by 4.44 d B, and the correction factor is 0.25 d B, in which the modulation frequency is high enough. Additionally, the factor is 1.767 d B for the modulation frequency of 25 MHz. On this basis,phase modulations with various indexes and a fixed frequency of 25 MHz are adopted to verify the modified model, and the results are positive. To obtain the highest gain saturation power, the model is referable. The research results provide a guide for the design of practical DFRAs.
基金supported by National High Technology ICF Committee in Chinathe National Natural Science Fund of China(Nos.10675024,10335020,10375011 and 10576007)the Laboratory of Computational Physics(No.51479050205ZW0905)
文摘Stimulated Raman particle-in-cell (PIC) simulations scattering (SRS) in a low-density The backward stimulated Raman plasma slab is investigated by scattering (B-SRS) dominates initially and erodes the head of the pump wave, while the forward stimulated Raman scattering (F-SRS) subsequently develops and is located at the rear part of the slab. Two-stage electron acceleration may be more efficient due to the coexistence of these two instabilities. The B-SRS plasma wave with low phase velocities can accelerate the background electrons which may be further boosted to higher energies by the F-SRS plasma wave with high phase velocities. The simulations show that the peaks of the main components in both the frequency and wave number spectra occur at the positions estimated from the phase-matching conditions.
基金Project supported by the National Natural Science Foundation of China (Gant No. 10974067)the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11104106)+1 种基金the Science and Technology Planning Project of Jilin Province, China (Gant Nos. 20101508 201101037 and 201115033)China Postdoctoral Science Foundation (Grant No. 20100481062)
文摘The competition between the stimulated resonance Raman scattering (SRRS) of Rhodamine B (RhB) and the stimulated Raman scattering (SRS) of ethanol (C2H50H) is observed at the RhB in C2H5OH solution. For different concentrations of the solution, the peak wavelengths of the SRRS, the amplified spontaneous emission (ASE), the fluorescence and the absorption of RhB are different. The SRRS of RhB and the SRS of C2H50H are simultaneously generated when the concentration of the solution is 10-5 mol/L and the energy of the excitation laser is 20.4 mJ. Otherwise, only either the SRRS of RhB or the SRS of C2H5OH is generated. The SRRS can be amplified by the ASE gain when the SRRS is near the peak of the ASE, and the peak wavelength of the SRRS coincides with the wavelength of the maximal intensity ASE.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA25050700)the National Natural Science Foundation of China(Grant Nos.11805062,11875091 and 11975059)+1 种基金the Science Challenge Project(Grant No.TZ2016005)the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ5029)。
文摘Stimulated Raman scattering(SRS)is one of the main instabilities affecting success of fusion ignition.Here,we study the relationship between Raman growth and Landau damping with various distribution functions combining the analytic formulas and Vlasov simulations.The Landau damping obtained by Vlasov-Poisson simulation and Raman growth rate obtained by Vlasov-Maxwell simulation are anti-correlated,which is consistent with our theoretical analysis quantitatively.Maxwellian distribution,flattened distribution,and bi-Maxwellian distribution are studied in detail,which represent three typical stages of SRS.We also demonstrate the effects of plateau width,hot-electron fraction,hot-to-cold electron temperature ratio,and collisional damping on the Landau damping and growth rate.They gives us a deep understanding of SRS and possible ways to mitigate SRS through manipulating distribution functions to a high Landau damping regime.
基金supported by the National Key Research and Development Program of China (No. 2016YFA0401100)the Strategic Priority Re-search Program of Chinese Academy of Sciences (No. XDA25050700)+1 种基金the Scientific Research Foundation of Hunan Provincial Education Department (No. 20A042)National Natural Science Foundation of China (Nos. 11805062, 11675264, 11774430)
文摘Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the plasma density,electron temperature,and magnetic field intensity.One-dimensional particle-in-cell simulations are carried out to examine the kinetic evolution of SRS under low magnetic intensity of w_c/w_0<0.01.There are two density regions distinguished in which the absolute growth of enveloped electrostatic waves and spectrum present quite different characteristics.In a relatively low-density plasma(ne~0.20 nc),the plasma wave presents typical absolute growth and the magnetic field alleviates linear SRS.While in the plasma whose density is near the cut-off point(ne~0.23 nc),the magnetic field induces a spectral splitting of the backscattering and forward-scattering waves.It has been observed in simulations and verified by theoretical analysis.Due to this effect,the onset of reflectivity delays,and the plasma waves form high-frequency oscillation and periodic envelope structure.The split wavenumber Dk/k0 is proportional to the magnetic field intensity and plasma density.These studies provide novel insight into the kinetic behavior of SRS in magnetized plasmas.
文摘The purpose of this article is to consider two aspects of the nonstationary stimulated Raman scattering by polaritons in cubic crystals. The first feature is related to the pump field, which, by deforming the permittivity of the medium, changes its symmetry. As a result, for example, the cubic crystal becomes anisotropic. The second one results from the possibility of exciting anomalous longitudinal waves at the frequency of the mechanical phonons which is the fundamental difference between scattering by dipole-active (polar) phonons and that of by dipole-inactive (nonpolar) ones. When the phonon frequency is approached, the amplitude of the transverse polariton wave decreases due to increased absorption and the wave mismatch. The polariton wave becomes practically longitudinal. Such a wave is maintained by the pump field and exists only in a pumped medium. The system of four shortened nonstationary equations (two for the Stokes waves with perpendicular polarizations and two for both transverse and longitudinal polariton waves) is obtained. The analysis is carried out for a given stationary pump field which is assumed to be a linearly polarized plane electromagnetic wave. Principal attention was paid to the calculation and analysis of the gain factor which defines the intensities of both stimulated (SRS) and spontaneous Raman scattering. The expressions for two proper gain factors gμ are obtained for Stokes waves in nonstationary case. It was shown that the pumped cubic crystal becomes anisotropic. It is also shown that the values of intensities calculated by using the expression for gμ are consistent with the experimental results for spectra of ZnS.
文摘The system of equations simulating the processes of nonstationary stimulated Raman scattering (SRS) with the excitation of polar optical phonons is obtained. This system is found by applying such standard methods as the nonstationary theory of perturbations, which resulted in the equations for the amplitudes of probabilities to find the discrete system in certain state, and slowly-varying amplitudes for the electromagnetic waves. It has been shown that the obtained system includes, as extremes, the case of classical interaction between electromagnetic field and resonant medium (including the “area theorem”), and the one related with SRS on optical phonons. We have conducted both theoretical and numerical investigation of simplified system assuming that the amplitudes of all electromagnetic waves (laser, Stokes, and polariton) were real (there was no destructive spatial-temporal phase modulation). Only low-order nonlinear processes are considered. It is shown that this system can be reduced to Sine-Gordon equation. This system can also be simplified to the equation that simulates the motion of physical pendulum from upper equilibrium position. The numerical study of nonstationary SRS when the electromagnetic field of laser radiation and Stokes excite both polariton emission and the continuum of dipole-active phonons has been carried out. The evolution of the intensity of the polariton wave as function of the length of nonlinear medium has been numerically analyzed.
基金Supported by the National Natural Science Foundation of China under Grant No 11404404the Outstanding Youth Fund Project of Hunan Provincethe Fund of Innovation of National University of Defense Technology under Grant No B120701
文摘We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power amplifier system. The cascaded SRS is achieved by using a long passive fiber pumped by a pulsed fiber laser cen: tered at wavelength 1064 nm. The amplified spontaneous emission during the amplification process is efficiently suppressed by cutting the length of the passive fiber and by using a double-clad ytterbium-doped fiber amplifier. The generated broadband spectrum spans from 960nm to 1700nm with maximum average output 13.6 W and average spectral power density approximately 17. 7 mW/nm.
文摘When the film is excited by a very low excitation energy, thespontaneous Raman scattering emerges. The intensity of Ramanscattering is proportional to the Excitation power below thethreshold excitation. When the excited power reaches the Excitationthreshold, the intensity of Stokes light strongly increases.Meanwhile an anti- Stokes light at 495 nm and multiple order butsmall Stokes peaks occur. The intensity of Stokes light is muchlarger than that of anti-Stokes.
文摘Expressions are obtained for the shortened Maxwell’s equations simulating the evolution of the ultrashort pulses propagating in anisotropic dipole-active crystals in stimulated Raman scattering (SRS) by polaritons. The developed theory considers the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is approximated by a linearly polarized plane electromagnetic wave. The possibility of simultaneous propagation of pulses on both different frequencies (pump and Stokes) and different polarization (simultons) is theoretically shown. It is also shown that the expression for the gain factor g in SRS is consistent with the experimental results for the spectra of ZnS.
基金supported by the Academic Research Fund(AcRF)-Tier 2(A-8000117-01-00)and Tier 1(R397-000334-114,R397-000-371-114,and R397-000-378-114)from the Ministry of Education(MOE)the Merlion Fund(WBS R-397-000-356-133)the National Medical Research Council(NMRC)(A-0009502-01-00 and A-8001143-00-00),Singapore
文摘Three-dimensional(3D)imaging is essential for understanding intricate biological and biomedical systems,yet live cell and tissue imaging applications still face challenges due to constrained imaging speed and strong scattering in turbid media.Here,we present a unique phase-modulated stimulated Raman scattering tomography(PM-SRST)technique to achieve rapid label-free 3D chemical imaging in cells and tissue.To accomplish PM-SRST,we utilize a spatial light modulator to electronically manipulate the focused Stokes beam along the needle Bessel pump beam for SRS tomography without the need for mechanical z scanning.We demonstrate the rapid 3D imaging capability of PM-SRST by real-time monitoring of 3D Brownian motion of polystyrene beads in water with 8.5 Hz volume rate,as well as the instant biochemical responses to acetic acid stimulants in MCF-7 cells.Further,combining the Bessel pump beam with a longer wavelength Stokes beam(NIR-II window)provides a superior scattering resilient ability in PM-SRST,enabling rapid tomography in deeper tissue areas.The PM-SRST technique providestwofold enhancement in imaging depth in highly scattering media(e.g.,polymer beads phantom and biotissue like porcine skin and brain tissue)compared with conventional point-scan SRS.We also demonstrate the rapid 3D imaging ability of PM-SRST by observing the dynamic diffusion and uptake processes of deuterium oxide molecules into plant roots.The rapid PM-SRST developed can be used to facilitate label-free 3D chemical imaging of metabolic activities and functional dynamic processes of drug delivery and therapeutics in live cells and tissue.