The treatment of bone defects remains a great clinical challenge.With the development of science and technology,bone tissue engineering technology has emerged,which can mimic the structure and function of natural bone...The treatment of bone defects remains a great clinical challenge.With the development of science and technology,bone tissue engineering technology has emerged,which can mimic the structure and function of natural bone tissues and create solutions for repairing or replacing human bone tissues based on biocompatible materials,cells and bioactive factors.Hydrogels are favoured by researchers due to their high water content,degradability and good biocompatibility.This paper describes the hydrogel sources,roles and applications.According to the different types of stimuli,hydrogels are classified into three categories:physical,chemical and biochemical responses,and the applications of different stimuli-responsive hydrogels in bone tissue engineering are summarised.Stimuli-responsive hydrogels can form a semi-solid with good adhesion based on different physiological environments,which can carry a variety of bone-enhancing bioactive factors,drugs and cells,and have a long retention time in the local area,which is conducive to a long period of controlled release;they can also form a scaffold for constructing tissue repair,which can jointly promote the repair of bone injury sites.However,it also has many defects,such as poor biocompatibility,immunogenicity and mechanical stability.Further studies are still needed in the future to facilitate its clinical translation.展开更多
Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable...Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable computational operations in response to specific stimuli.This review provides a comprehensive overview of recent advancements in the design,working principles,and applications of stimuli-responsive DNA-based logic gates.The progress made in developing various types of logic gates triggered by metal ions,pH,oligonucleotides,small molecules,proteins,and light is highlighted.The applications of these logic gates in imaging and biosensing,drug delivery,synthetic biology and molecular computing are discussed.This review underscores the significant contributions and future prospects of stimuli-responsive DNA-based logic gates in advancing the field of nanotechnology.展开更多
Hydrogels exhibit a performance similar to that of the extracellular matrix and are compatible with human tissues and organs.Stimuli-responsive hydrogels that can respond smartly to a variety of stimuli have recently ...Hydrogels exhibit a performance similar to that of the extracellular matrix and are compatible with human tissues and organs.Stimuli-responsive hydrogels that can respond smartly to a variety of stimuli have recently attracted extensive interest for biomedical applications.The response of these hydrogels to various single/multiple stimuli shows great potential for drug delivery,biosensors,wound dressing,cancer therapy,and tissue engineering.This review summarises the recent advances in the design of different stimuli-responsive hydrogels and their biomedical applications.We herein describe the mechanisms underlying the stimulus-response,and summarise the strategies for fabri-cating stimuli-responsive hydrogels that can respond to single or multiple stimuli from endogenous(i.e.pH,enzymes,glucose,and reactive oxygen species)or exogenous(i.e.magnetic and electric fields,temperature,and photo)sources.The current challenges faced by stimuli-responsive hydrogels are discussed and an outlook on future research directions is provided.展开更多
Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung H...Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1)with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics.展开更多
Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive mol...Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo.Hydrogels have emerged as ideal carriers to address these challenges,offering the potential to prolong retention times at lesion sites,extend half-lives in vivo and mitigate side effects,avoid burst release,and promote adsorption under physiological conditions.This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration,encompassing applications in cranial defect repair,femoral defect repair,periodontal bone regeneration,and bone regeneration with underlying diseases.Additionally,this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery,carrier-assisted delivery,and sequential delivery.Finally,this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense fo...Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy.For this purpose,stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection,prolonged blood circulation,specific tumor accumulation,and controlled release profile of nucleic acid drugs.Besides,synergistic therapy could be achieved when combined with other therapeutic regimens.This review summarizes recent advances in various stimuliresponsive nanocarriers for gene delivery.Particularly,the nanocarriers responding to endogenous stimuli including pH,reactive oxygen species,glutathione,and enzyme,etc.,and exogenous stimuli including light,thermo,ultrasound,magnetic field,etc.,are introduced.Finally,the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed.The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.展开更多
Responsive emulsions are the emulsions that can be reversibly switched on-demand between“stable”and“unstable”by environmental stimulus or trigger,which allows a simple and effective adjustment approach to achieve ...Responsive emulsions are the emulsions that can be reversibly switched on-demand between“stable”and“unstable”by environmental stimulus or trigger,which allows a simple and effective adjustment approach to achieve emulsification and demulsification.In recent years,stimuli-responsive emulsions acting as smart soft material are received considerable attention with the advantages of simple manipulation,good reversibility,low cost,easy treatment,and little effect on the system.In this paper,the recent research progress of emulsions that can respond to external stimuli,including pH,light,magnetic field,CO_(2)/N_(2) and dual responsive are reviewed.Also,the potential applications based on responsive emulsion are discussed,such as catalytic reactions,heavy oil recovery,polymer particles synthesis and optical sensor,aiming to summarize the latest achievements and put forward the possible development trends of responsive emulsions.展开更多
Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functiona...Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.展开更多
D-a-tocopherol polyethylene glycol 1000 succinate(TPGS)is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA.It's widely applied as a multifunctional drug carrier for nanomedicine.The advantages of...D-a-tocopherol polyethylene glycol 1000 succinate(TPGS)is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA.It's widely applied as a multifunctional drug carrier for nanomedicine.The advantages of TPGS include P-glycoprotein(P-gp)inhibition,penetration promotion,apoptosis induction via mitochondrial-associated apoptotic pathways,multidrug resistant(MDR)reversion,metastasis inhibition and so on.TPGS-based drug delivery systems which are responding to extermal stimulus can combine the inhibitory functions of TPGS towards P-gp with the environmentally responsive controlled release property and thus exerts a synergistic anti-cancer effect,through increased intracellular drug concentration in tumors cells and well-controlled drug release behavior.In this review,TPGS-based nano-sized delivery systems responsive to different stimuli were summarized and discussed,including pH-responsive,redox-responsive and multi-responsive systems in various formulations.The achievements,mechanisms and diffcrent characteristics of TPGS-bascd stimuli-responsive drug-delivery systems in tumor therapy were also outlined.展开更多
Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-...Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-inflammatory drugs,are limited in efficacy and associated with adverse effects.Recently,nanozyme(NZ)-based hydrogels have shown great promise in addressing these challenges.NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels.The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation.This review highlights the current state of the art in NZ-engineered hydrogels(NZ@hydrogels)for anti-inflammatory and skin regeneration applications.It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness.Additionally,the challenges and future directions in this ground,particularly their clinical translation,are addressed.The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels,offering new possibilities for targeted and personalized skin-care therapies.展开更多
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i...High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.展开更多
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ...Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.展开更多
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ...Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.展开更多
Bacterial resistance and excessive inflammation are common issues that hinder wound healing.Antimicrobial peptides(AMPs)offer a promising and versatile antibacterial option compared to traditional antibiotics,with add...Bacterial resistance and excessive inflammation are common issues that hinder wound healing.Antimicrobial peptides(AMPs)offer a promising and versatile antibacterial option compared to traditional antibiotics,with additional anti-inflammatory properties.However,the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation.TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs.Therefore,in this study,a composite hydrogel(HAMA/t-GL13K)was prepared via the photocross-linking method,in which tFNAs carry GL13K.The hydrogel was injectable,biocompatible,and could be instantly photocured.It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS.Thereby,the hydrogel inhibited bacterial infection,shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring.The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing.展开更多
Cancer has become a very serious challenge with aging of the human population.Advances in nanotechnology have provided new perspectives in the treatment of cancer.Through the combination of nanotechnology and therapeu...Cancer has become a very serious challenge with aging of the human population.Advances in nanotechnology have provided new perspectives in the treatment of cancer.Through the combination of nanotechnology and therapeutics,nanomedicine has been successfully used to treat cancer in recent years.In terms of nanomedicine,nanocarriers play a key role in delivering therapeutic agents,reducing severe side effects,simplifying the administration scheme,and improving therapeutic efficacies.Modulations of the structure and function of nanocarriers for improved therapeutic efficacy in cancer have attracted increasing attention in recent years.Stimuli-responsive nanocarriers penetrate deeply into tissues and respond to external or internal stimuli by releasing the therapeutic agent for cancer therapy.Notably,stimuli-responsive nanocarriers reduce the severe side effects of therapeutic agents,when compared with systemic chemotherapy,and achieve controlled drug release at tumor sites.Therefore,the development of stimuli-responsive nanocarriers plays a crucial role in drug delivery for cancer therapy.This article focuses on the development of nanomaterials with stimuli-responsive properties for use as nanocarriers,in the last few decades.These nanocarriers are more effective at delivering the therapeutic agent under the control of external or internal stimuli.Furthermore,nanocarriers with theranostic features have been designed and fabricated to confirm their great potential in achieving effective treatment of cancer,which will provide us with better choices for cancer therapy.展开更多
Thermo-responsive hydrated macro-, micro- and submicro-reticular systems (TRHRS), particularly polymers forming hydrogels or similar networks, have attracted extensive interest because comprise biomaterials, smart or ...Thermo-responsive hydrated macro-, micro- and submicro-reticular systems (TRHRS), particularly polymers forming hydrogels or similar networks, have attracted extensive interest because comprise biomaterials, smart or intelligent materials. Phase transition temperature (LCST or UCST, i.e. low or upper critical solution temperature, respectively) at about the TRHRS exhibiting a unique hydration-dehydration change is a typical characteristic. The characterization and division of the TRHRS are described followed by explanation of their behaviour. The presented original explanation is based on merely combination of basic thermodynamical state of individual useful macromolecule chains (long-chain or coil) with inter- and intra-mutual action of attractive and repulsive intramolecular hydration forces among them being strongly dependent upon temperature. Acquainted with this piece of knowledge, a theoretical concept of really biological systems movement, e.g. muscle tissues or artificial muscle etc., can be formulated.展开更多
The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone.Constructing multifactorial,sp...The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone.Constructing multifactorial,spatially oriented scaffolds to stimulate osteochondral regeneration,has immense significance.Herein,targeted drugs,namely kartogenin@polydopamine(KGN@PDA)nanoparticles for cartilage repair and miRNA@calcium phosphate(miRNA@CaP)NPs for bone regeneration,were in situ deposited on a patterned supramolecular-assembled 2-ureido-4[lH]-pyrimidinone(UPy)modified gelation hydrogel film,facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands.This hydrogel film can be rolled into a cylindrical plug,mimicking the Haversian canal structure of natural bone.The resultant hydrogel demonstrates stable mechanical properties,a self-healing ability,a high capability for reactive oxygen species capture,and controlled release of KGN and miR-26a.In vitro,KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3β/β-catenin pathways,respectively.In vivo,the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration,evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones,along with the successful integration of neocartilage with subchondral bone.This biomaterial delivery approach represents a significant toward improved osteochondral repair.展开更多
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composite...Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems.展开更多
基金supported by Basic Research Program of Jiangsu Province(Natural Science Foundation),Nos.BK20220464,BK20221420National Natural Science Foundation of China,No.82302735+2 种基金Open Project of Shanghai University Sub-centre of National Science Centre for Translational Medicine(Shanghai),No.SUITM-202405Cadre Health Care Subjects in Jiangsu Province,No.BJ23020Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.SJCX24_1045.
文摘The treatment of bone defects remains a great clinical challenge.With the development of science and technology,bone tissue engineering technology has emerged,which can mimic the structure and function of natural bone tissues and create solutions for repairing or replacing human bone tissues based on biocompatible materials,cells and bioactive factors.Hydrogels are favoured by researchers due to their high water content,degradability and good biocompatibility.This paper describes the hydrogel sources,roles and applications.According to the different types of stimuli,hydrogels are classified into three categories:physical,chemical and biochemical responses,and the applications of different stimuli-responsive hydrogels in bone tissue engineering are summarised.Stimuli-responsive hydrogels can form a semi-solid with good adhesion based on different physiological environments,which can carry a variety of bone-enhancing bioactive factors,drugs and cells,and have a long retention time in the local area,which is conducive to a long period of controlled release;they can also form a scaffold for constructing tissue repair,which can jointly promote the repair of bone injury sites.However,it also has many defects,such as poor biocompatibility,immunogenicity and mechanical stability.Further studies are still needed in the future to facilitate its clinical translation.
基金supported by Hong Kong Research Grants Council(11307421,11301220,and 11304719)Health and Medical Research Fund(09203576 and 07181396)+2 种基金National Science Foundation of China(21574109 and 217780430)The Science and Technology Innovation Committee of Shenzhen Municipality(JCYJ20190812160203619)City University of Hong Kong 7005832 and 7006006.
文摘Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable computational operations in response to specific stimuli.This review provides a comprehensive overview of recent advancements in the design,working principles,and applications of stimuli-responsive DNA-based logic gates.The progress made in developing various types of logic gates triggered by metal ions,pH,oligonucleotides,small molecules,proteins,and light is highlighted.The applications of these logic gates in imaging and biosensing,drug delivery,synthetic biology and molecular computing are discussed.This review underscores the significant contributions and future prospects of stimuli-responsive DNA-based logic gates in advancing the field of nanotechnology.
基金National Natural Science Foundation of China,Grant/Award Number:31800798Central University Basic Research Fund of China,Grant/Award Number:202241010。
文摘Hydrogels exhibit a performance similar to that of the extracellular matrix and are compatible with human tissues and organs.Stimuli-responsive hydrogels that can respond smartly to a variety of stimuli have recently attracted extensive interest for biomedical applications.The response of these hydrogels to various single/multiple stimuli shows great potential for drug delivery,biosensors,wound dressing,cancer therapy,and tissue engineering.This review summarises the recent advances in the design of different stimuli-responsive hydrogels and their biomedical applications.We herein describe the mechanisms underlying the stimulus-response,and summarise the strategies for fabri-cating stimuli-responsive hydrogels that can respond to single or multiple stimuli from endogenous(i.e.pH,enzymes,glucose,and reactive oxygen species)or exogenous(i.e.magnetic and electric fields,temperature,and photo)sources.The current challenges faced by stimuli-responsive hydrogels are discussed and an outlook on future research directions is provided.
基金supported by the National Natural Science Foundation of China(52475610)Zhejiang Provincial Natural Science Foundation of China(LDQ24E050001).
文摘Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1)with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics.
基金supported by the National Natural Science Foundation of China(51925304)Natural Science Foundation of Sichuan Province(2024NSFSC1023)Medical Research Program of Sichuan Province(Q23015).
文摘Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo.Hydrogels have emerged as ideal carriers to address these challenges,offering the potential to prolong retention times at lesion sites,extend half-lives in vivo and mitigate side effects,avoid burst release,and promote adsorption under physiological conditions.This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration,encompassing applications in cranial defect repair,femoral defect repair,periodontal bone regeneration,and bone regeneration with underlying diseases.Additionally,this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery,carrier-assisted delivery,and sequential delivery.Finally,this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金the financial support from the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(52103196 and 52073060)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021B1515120054)the Shenzhen Fundamental Research Program(JCYJ20190813152616459 and JCYJ20210324133214038)。
文摘Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy.For this purpose,stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection,prolonged blood circulation,specific tumor accumulation,and controlled release profile of nucleic acid drugs.Besides,synergistic therapy could be achieved when combined with other therapeutic regimens.This review summarizes recent advances in various stimuliresponsive nanocarriers for gene delivery.Particularly,the nanocarriers responding to endogenous stimuli including pH,reactive oxygen species,glutathione,and enzyme,etc.,and exogenous stimuli including light,thermo,ultrasound,magnetic field,etc.,are introduced.Finally,the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed.The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.
基金supported by the National Natural Science Foun-dation of China(21908026)the Fujian Province science and tech-nology guidance project(2021Y0007)Key Program of Qingyuan Innovation Laboratory(00221004).
文摘Responsive emulsions are the emulsions that can be reversibly switched on-demand between“stable”and“unstable”by environmental stimulus or trigger,which allows a simple and effective adjustment approach to achieve emulsification and demulsification.In recent years,stimuli-responsive emulsions acting as smart soft material are received considerable attention with the advantages of simple manipulation,good reversibility,low cost,easy treatment,and little effect on the system.In this paper,the recent research progress of emulsions that can respond to external stimuli,including pH,light,magnetic field,CO_(2)/N_(2) and dual responsive are reviewed.Also,the potential applications based on responsive emulsion are discussed,such as catalytic reactions,heavy oil recovery,polymer particles synthesis and optical sensor,aiming to summarize the latest achievements and put forward the possible development trends of responsive emulsions.
基金supported by the National Natural Science Foundation of China (No.51773190 and No.51973206)。
文摘Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.
基金This study was supported by the National Natural Science Foundation of China(No.81871473)and the Natural Science Foundation of Zhejiang Chinese Medical University(No.2018ZZ11).
文摘D-a-tocopherol polyethylene glycol 1000 succinate(TPGS)is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA.It's widely applied as a multifunctional drug carrier for nanomedicine.The advantages of TPGS include P-glycoprotein(P-gp)inhibition,penetration promotion,apoptosis induction via mitochondrial-associated apoptotic pathways,multidrug resistant(MDR)reversion,metastasis inhibition and so on.TPGS-based drug delivery systems which are responding to extermal stimulus can combine the inhibitory functions of TPGS towards P-gp with the environmentally responsive controlled release property and thus exerts a synergistic anti-cancer effect,through increased intracellular drug concentration in tumors cells and well-controlled drug release behavior.In this review,TPGS-based nano-sized delivery systems responsive to different stimuli were summarized and discussed,including pH-responsive,redox-responsive and multi-responsive systems in various formulations.The achievements,mechanisms and diffcrent characteristics of TPGS-bascd stimuli-responsive drug-delivery systems in tumor therapy were also outlined.
基金supported by the grants from National Research Foundation(NRF,#2021R1A5A2022318,#RS-2023-00220408,#RS-2023-00247485),Republic of Korea.
文摘Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-inflammatory drugs,are limited in efficacy and associated with adverse effects.Recently,nanozyme(NZ)-based hydrogels have shown great promise in addressing these challenges.NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels.The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation.This review highlights the current state of the art in NZ-engineered hydrogels(NZ@hydrogels)for anti-inflammatory and skin regeneration applications.It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness.Additionally,the challenges and future directions in this ground,particularly their clinical translation,are addressed.The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels,offering new possibilities for targeted and personalized skin-care therapies.
基金the National Natural Science Foundation of China(11875138,52077095).
文摘High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.
基金the National Natural Science Foundation of China(Grant No.52076028).
文摘Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.
基金supported by the National Natural Science Foundation of China(22278110)China Postdoctoral Science Foundation(2022M720984)+1 种基金the Natural Science Foundation of Hebei Province of China(B2021202012)Tianjin Technical Innovation Guidance Special Project(20YDTPJC00630).
文摘Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.
基金supported by National Key R&D Program of China(2019YFA0110600)National Natural Science Foundation of China(82370929,81970916)+2 种基金Sichuan Science and Technology Program(2022NSFSC0002)Sichuan Province Youth Science and Technology Innovation Team(2022JDTD0021)Research and Develop Program,West China Hospital of Stomatology Sichuan University(RD03202302)。
文摘Bacterial resistance and excessive inflammation are common issues that hinder wound healing.Antimicrobial peptides(AMPs)offer a promising and versatile antibacterial option compared to traditional antibiotics,with additional anti-inflammatory properties.However,the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation.TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs.Therefore,in this study,a composite hydrogel(HAMA/t-GL13K)was prepared via the photocross-linking method,in which tFNAs carry GL13K.The hydrogel was injectable,biocompatible,and could be instantly photocured.It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS.Thereby,the hydrogel inhibited bacterial infection,shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring.The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing.
基金supported by China Postdoctoral Science Foundation(Grant No.2018M632795)the National Natural Science Foundation of China(Grant No.21704093)。
文摘Cancer has become a very serious challenge with aging of the human population.Advances in nanotechnology have provided new perspectives in the treatment of cancer.Through the combination of nanotechnology and therapeutics,nanomedicine has been successfully used to treat cancer in recent years.In terms of nanomedicine,nanocarriers play a key role in delivering therapeutic agents,reducing severe side effects,simplifying the administration scheme,and improving therapeutic efficacies.Modulations of the structure and function of nanocarriers for improved therapeutic efficacy in cancer have attracted increasing attention in recent years.Stimuli-responsive nanocarriers penetrate deeply into tissues and respond to external or internal stimuli by releasing the therapeutic agent for cancer therapy.Notably,stimuli-responsive nanocarriers reduce the severe side effects of therapeutic agents,when compared with systemic chemotherapy,and achieve controlled drug release at tumor sites.Therefore,the development of stimuli-responsive nanocarriers plays a crucial role in drug delivery for cancer therapy.This article focuses on the development of nanomaterials with stimuli-responsive properties for use as nanocarriers,in the last few decades.These nanocarriers are more effective at delivering the therapeutic agent under the control of external or internal stimuli.Furthermore,nanocarriers with theranostic features have been designed and fabricated to confirm their great potential in achieving effective treatment of cancer,which will provide us with better choices for cancer therapy.
文摘Thermo-responsive hydrated macro-, micro- and submicro-reticular systems (TRHRS), particularly polymers forming hydrogels or similar networks, have attracted extensive interest because comprise biomaterials, smart or intelligent materials. Phase transition temperature (LCST or UCST, i.e. low or upper critical solution temperature, respectively) at about the TRHRS exhibiting a unique hydration-dehydration change is a typical characteristic. The characterization and division of the TRHRS are described followed by explanation of their behaviour. The presented original explanation is based on merely combination of basic thermodynamical state of individual useful macromolecule chains (long-chain or coil) with inter- and intra-mutual action of attractive and repulsive intramolecular hydration forces among them being strongly dependent upon temperature. Acquainted with this piece of knowledge, a theoretical concept of really biological systems movement, e.g. muscle tissues or artificial muscle etc., can be formulated.
基金the Natural Science Foundation of China(Grant Nos.82072413,82101649)National Key Research and Development Program of China(Grant Nos.2021YFE0105400).
文摘The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone.Constructing multifactorial,spatially oriented scaffolds to stimulate osteochondral regeneration,has immense significance.Herein,targeted drugs,namely kartogenin@polydopamine(KGN@PDA)nanoparticles for cartilage repair and miRNA@calcium phosphate(miRNA@CaP)NPs for bone regeneration,were in situ deposited on a patterned supramolecular-assembled 2-ureido-4[lH]-pyrimidinone(UPy)modified gelation hydrogel film,facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands.This hydrogel film can be rolled into a cylindrical plug,mimicking the Haversian canal structure of natural bone.The resultant hydrogel demonstrates stable mechanical properties,a self-healing ability,a high capability for reactive oxygen species capture,and controlled release of KGN and miR-26a.In vitro,KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3β/β-catenin pathways,respectively.In vivo,the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration,evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones,along with the successful integration of neocartilage with subchondral bone.This biomaterial delivery approach represents a significant toward improved osteochondral repair.
基金We acknowledge the support from the National Key Research and Development Program of China(Grant No.2022YFA1405000)the Natural Science Foundation of Jiangsu Province,Major Project(Grant No.BK20212004)+1 种基金the National Natural Science Foundation of China(Grant No.62374083)the State Key Laboratory of Analytical Chemistry for Life Science(Grant No.5431ZZXM2205).
文摘Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems.