A modern transonic computational fluid dynamics test case is described in this paper,which is the Aerodynamic Validation Model(AVM) from the Chinese Aeronautical Establishment(CAE). The CAE-AVM is a representation...A modern transonic computational fluid dynamics test case is described in this paper,which is the Aerodynamic Validation Model(AVM) from the Chinese Aeronautical Establishment(CAE). The CAE-AVM is a representation of a modern transonic business jet aircraft with a design Mach number of 0.85. Numerical simulations for the AVM are conducted for two geometries: one baseline geometry, and one geometry that includes the applied model support system of the wind tunnel as well as the deformed wing shape that occurred during wind tunnel testing. The combined influence of wing deformation and model support interference on local and integral aerodynamic features is presented. Comparisons between CFD and experimental results are made; reasons of discrepancy between results from considered cases are analyzed.展开更多
基金supported by the Grant Agreement(No.4.628.21.0004)with the Ministry of Education and Science of the Russian Federation(project unique identifier RFMEFI62815X0004)on the theme‘‘Development and implementation of the optimization of the aircraft power plant aerodynamics as a part of a 3rd generation multidisciplinary optimization and its application to optimization of promising new types of aircraft”
文摘A modern transonic computational fluid dynamics test case is described in this paper,which is the Aerodynamic Validation Model(AVM) from the Chinese Aeronautical Establishment(CAE). The CAE-AVM is a representation of a modern transonic business jet aircraft with a design Mach number of 0.85. Numerical simulations for the AVM are conducted for two geometries: one baseline geometry, and one geometry that includes the applied model support system of the wind tunnel as well as the deformed wing shape that occurred during wind tunnel testing. The combined influence of wing deformation and model support interference on local and integral aerodynamic features is presented. Comparisons between CFD and experimental results are made; reasons of discrepancy between results from considered cases are analyzed.