期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Friction stir keyholeless spot welding of AZ31 Mg alloy-mild steel 被引量:9
1
作者 张忠科 王希靖 +1 位作者 王培中 赵刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1709-1716,共8页
Friction stir keyholeless spot welding(FSKSW) using a retractable pin for 1.0 mm thick galvanized mild steel and 3 mm thick AZ31 B magnesium alloy in a lap configuration was investigated.The process variables were o... Friction stir keyholeless spot welding(FSKSW) using a retractable pin for 1.0 mm thick galvanized mild steel and 3 mm thick AZ31 B magnesium alloy in a lap configuration was investigated.The process variables were optimized in terms of the joint strength.The effects of the stacking sequence on joint formation and the joining mechanism of FSKSW AZ31B-to-mild steel joints were also analyzed.It shows that the process window and joint strength are strongly influenced by the stacking sequence of the workpieces.While the process window is narrow and unstable for FSKSW of a magnesium-to-steel stack-up,a desirable process was established for the steel-to-magnesium stacking sequence,a desirable process and higher strength joint can be got when the steel-to-magnesium stacking sequence.XRD phase and EPMA analyses of the FSKSW joint showed that the intermetallic compounds are formed at the steel-to-magnesium interface,and the element diffusion between the mild steel and AZ31 B magnesium alloy revealed that the joining methods for FSKSW joints is the main mechanical joining along with certain metallurgical bonding. 展开更多
关键词 friction stir keyholeless spot welding dissimilar alloys mechanical property
下载PDF
Microstructure and properties of probeless friction stir spot welding of AZ31 magnesium alloy joints 被引量:7
2
作者 Xia-wei YANG Wu-yuan FENG +4 位作者 Wen-ya LI Xiu-rong DONG Ya-xin XU Qiang CHU Shuo-tian YAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第11期2300-2309,共10页
The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical prope... The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical properties was investigated by using different rotating speeds and dwell time.Microstructure of joints is divided into three regions:stir zone,thermomechanically-affected zone and heat-affected zone.With the increase of rotation speed and dwell time,the depth of stir zone gradually increases,and hook defects extend from the interface of two plates to the surface of the upper plate.The tensile shear strength of joints and two fracture modes(shear fracture and plug fracture)are closely related to hook defects.The maximum tensile shear strength of the joint is 4.22 kN when rotation speed and dwell time are 1180 r/min and 9 s,respectively.Microhardness value and its fluctuation in upper sheet are evidently higher than those of the lower sheet. 展开更多
关键词 probeless friction stir spot welding AZ31 alloy mechanical properties fracture mechanism
下载PDF
Filling technique for keyhole of friction stir spot welding based on the principles of resistance spot welding 被引量:3
3
作者 Deng Lipeng Ke Liming Liu Jinhe 《China Welding》 EI CAS 2019年第3期34-41,共8页
Keyhole at the end of a weld prepared by friction stir welding(FSW)is one of the major issues that impede the application of FSW.To address this issue,a keyhole filling technique was proposed in this paper,which is ba... Keyhole at the end of a weld prepared by friction stir welding(FSW)is one of the major issues that impede the application of FSW.To address this issue,a keyhole filling technique was proposed in this paper,which is based on the principles of resistance spot welding(RSW).A three-phase secondary rectifier resistance spot welder was applied as the experimental instrument for filling the keyhole in the center of friction stir spot weld(FSSW).The test sheet is a 2024-T4 aluminium alloy with a thickness of 6.0mm.The experiments results show that the filled joint strength is improved by 26.12%since the area is increased for the plug in the keyhole.And there are two kinds of dimples in the tensile fracture-equiaxial dimples and long dimples.The filled joint involves the fusion welding zone(FWZ),pressure welding zone(PWZ),melted plug zone(MPZ),and plastic deformation zone(PDZ).The FWZ and the PWZ is the melting bond and diffusion bond between the plug and keyhole,respectively.The MPZ is the center part and the PDZ is upper or lower part of the plug. 展开更多
关键词 friction stir spot welding resistance spot welding KEYHOLE aluminum alloy
下载PDF
Dissimilar friction stir spot welding of AA2024-T3/AA7075-T6 aluminum alloys under different welding parameters and media 被引量:1
4
作者 Gui-ju Zhang Cai-yuan Xiao Olatunj Oladimeji Ojo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期531-544,共14页
This paper studies the friction stir spot welding of AA2024-T3/AA7075-T6 Al alloys in the ambient and underwater environments by clarifying the nugget features,microstructure,fracture and mechanical properties of the ... This paper studies the friction stir spot welding of AA2024-T3/AA7075-T6 Al alloys in the ambient and underwater environments by clarifying the nugget features,microstructure,fracture and mechanical properties of the joints.The results show that the water-cooling medium exhibits a significant heat absorption capacity in the AA2024-T3/AA7075-T6 welded joint.Nugget features such as stir zone width,circular imprints,average grain sizes,and angular inter-material hooking are reduced by the watercooling effect in the joints.Narrower whitish(intercalated structures)bands are formed in the underwater joints while Mg2Si and Al2CuMg precipitates are formed in the ambient and the underwater welded joints respectively.An increase in tool rotational speed(600e1400 rpm)and plunge depth(0.1 e0.5 mm)increases the tensile-shear force of the welded AA2024-T3/AA7075-T6 joints in both the ambient and underwater environments.The maximum tensile-shear forces of 5900 N and 6700 N were obtained in the ambient and the underwater welds respectively. 展开更多
关键词 friction stir spot welding Underwater friction stir spot welding Nugget characterization Microstructure Mechanical properties Fracture
下载PDF
Development of processing windows for friction stir spot welding of aluminium Al5052/copper C27200 dissimilar materials 被引量:1
5
作者 S. SIDDHARTH T.SENTHILKUMAR M.CHANDRASEKAR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第6期1273-1284,共12页
Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool... Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool rotational speed?plungedepth diagrams for effective joining of these materials were developed.Using a central composite design model,empirical relationswere developed to predict the changes in tensile shear failure load values and interface hardness of the joints with three processparameters such as tool rotational speed,plunge depth and dwell time.The adequacy of the developed model was verified usingANOVA analysis at95%confidence level.Response surface methodology was used to optimize the developed model to maximizetensile strength and minimize interface hardness.A high tensile shear failure load value of3850N and low interface hardness valueof HV81was observed for joints made under optimum conditions,and validation experiments confirmed the high predictability ofthe developed model with error less than2%.The operating windows developed shall act as reference maps for future designengineers in choosing appropriate friction stir spot welding process parameter values to obtain good joints. 展开更多
关键词 friction stir spot welding dissimilar materials aluminium COPPER processing windows response surface methodology
下载PDF
Refill Friction Stir Spot Welding Al Alloy to Copper via Pure Metallurgical Joining Mechanism 被引量:1
6
作者 Zhikang Shen Yuquan Ding +6 位作者 Wei Guo Wentao Hou Xiaochao Liu Haiyan Chen Fenjun Liu Wenya Li Adrian Gerlich 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期90-97,共8页
The current investigation of refill friction stir spot welding(refill FSSW)Al alloy to copper primarily involved plunging the tool into bottom copper sheet to achieve both metallurgical and mechanical interfacial bond... The current investigation of refill friction stir spot welding(refill FSSW)Al alloy to copper primarily involved plunging the tool into bottom copper sheet to achieve both metallurgical and mechanical interfacial bonding.Compared to conventional FSSW and pinless FSSW,weld strength can be significantly improved by using this method.Nevertheless,tool wear is a critical issue during refill FSSW.In this study,defect-free Al/copper dissimilar welds were successfully fabricated using refill FSSW by only plunging the tool into top Al alloy sheet.Overall,two types of continuous and ultra-thin intermetallic compounds(IMCs)layers were identified at the whole Al/copper interface.Also,strong evidence of melting and resolidification was observed in the localized region.The peak temperature obtained at the center of Al/copper interface was 591℃,and the heating rate reached up to 916℃/s during the sleeve penetration phase.A softened weld region was produced via refill FSSW process,the hardness profile exhibited a W-shaped appearance along middle thickness of top Al alloy.The weld lap shear load was insensitive to the welding condition,whose scatter was rather small.The fracture path exclusively propagated along the IMCs layer of Cu_(9)Al_(4) under the external lap shear loadings,both CuAl_(2) and Cu_(9)Al_(4) were detected on the fractured surface on the copper side.This research indicated that acceptable weld strength can be achieved via pure metallurgical joining mechanism,which has significant potential for the industrial applications. 展开更多
关键词 Refill friction stir spot welding Al alloy COPPER Interfacial microstructure Mechanical properties
下载PDF
Effect of thermo-mechanical conditions during constrained friction processing on the particle refinement of AM50 Mg-alloy phases
7
作者 Camila Caroline de Castro AndréMartins Neves Benjamin Klusemann 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2298-2311,共14页
Constrained Friction Processing(CFP)is a novel solid-state processing technique suitable for lightweight materials,such Mg-and Al-alloys.The technique enables grain size refinement to fine or even ultrafine scale.In t... Constrained Friction Processing(CFP)is a novel solid-state processing technique suitable for lightweight materials,such Mg-and Al-alloys.The technique enables grain size refinement to fine or even ultrafine scale.In this study,the effect of CFP on the microstructural refinement of AM50 rods is investigated in terms of particle size and morphology of the eutectic and secondary phases originally present in the base material,in particular the eutecticβ-Mg_(17)Al_(12)and Al-Mn phases.For that purpose,as-cast and solution heat-treated base material and processed samples were analyzed.The Al_(8)Mn_(5) intermetallic phase was identified as the main secondary phase present in all samples before and after the processing.A notorious refinement of these particles was observed,starting from particles with an average equivalent length of a few micrometers to around 560 nm after the processing.The refinement of the secondary phase refinement is attributed to a mechanism analogous to the attrition comminution,where the combination of temperature increase and shearing of the material enables the continuous breaking of the brittle intermetallic particles into smaller pieces.As for the eutectic phase,the results indicate the presence of the partially divorcedβ-Mg_(17)Al_(12)particles exclusively in the as-cast base material,indicating that no further phase transformations regarding the eutectic phase,such as dynamic precipitation,occurred after the CFP.In the case of the processed as-cast material analyzed after the CFP,the thermal energy generated during the processing led to temperature values above the solvus limit of the eutectic phase,which associated with the mechanical breakage of the particles,enabled the complete dissolution of this phase.Therefore,CFP was successfully demonstrated to promote an extensive microstructure refinement in multiple aspects,in terms of grain sizes of theα-Mg phase and presence and morphology of the Al-Mn and eutecticβ-Mg_(17)Al_(12). 展开更多
关键词 Constrained friction processing AM50 Refill friction stir spot welding Extrusion β-Mg_(17)Al_(12) Al-Mn phases
下载PDF
Material flow behavior and microstructural evolution during refill friction stir spot welding of alclad 2A12-T4 aluminum alloy
8
作者 Gao-hui Li Li Zhou +2 位作者 Ling-yun Luo Xi-ming Wu Ning Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第1期131-141,共11页
In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of alclad 2A12-T4 aluminum alloy during refill friction stir spot welding.There are two ma... In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of alclad 2A12-T4 aluminum alloy during refill friction stir spot welding.There are two material flow components, i.e., the inward-or outward-directed spiral flow on the horizontal plane and the upward-or downward-directed flow on the vertical plane.In the plunge stage, the flow of plasticized metal into the cavity is similar to that of a stack, whereby the upper layer is pushed upward by the lower layer.In the refill stage, this is process reversed.As such, there is no obvious vertical plasticized metal flow between adjacent layers.Welding leads to the coarsening of S(Al2CuMg) in the thermo-mechanically affected zone and the diminishing of S in the stir zone.Continuous dynamic recrystallization results in the formation of fine equiaxed grains in the stir zone, but this process becomes difficult in the thermo-mechanically affected zone due to the lower deformation rate and the pinning action of S precipitates on the dislocations and sub-grain boundaries, which leads to a high fraction of low-angle grain boundaries in this zone. 展开更多
关键词 refill friction stir spot welding aluminum alloy material flow behavior precipitate evolution dislocation configuration
下载PDF
Effect of rotary direction and speed on mechanical properties in friction stir spot welding of A6061 sheets e
9
作者 宋骁 邢丽 +3 位作者 卜文德 刘奋成 黄春平 柯黎明 《China Welding》 EI CAS 2013年第3期18-24,共7页
Friction stir spot welding of A6061 sheets was conducted using a tool with thread pin. The hook geometries, hook formation and mechanical properties of the joints welded with different rotary directions and speeds wer... Friction stir spot welding of A6061 sheets was conducted using a tool with thread pin. The hook geometries, hook formation and mechanical properties of the joints welded with different rotary directions and speeds were investigated. The results show that the hook in the joint welded in clockwise was curved upwards and that in anticlockwise was curved downwards. The hook formation was related to the plastic material flow in the joint. With increasing the rotary speed in clockwise direction, the hook moved upwards and far way from the center of the keyhole, resulting in an increase in the effective weld width and a decrease in the effective sheet thickness. Three types of fractuces were observed and they were affected by the hook geometries. The tensile shear load increased firstly and then decreased when the rotary speed increased in clockwise direction, which was related to the hook geometries. 展开更多
关键词 friction stir spot welding rotary direction rotary speed hook geometries mechanical properties
下载PDF
Fatigue behavior of friction stir spot welded AZ31 Mg alloy sheet joints 被引量:1
10
作者 罗天骄 史宝良 +2 位作者 段启强 付俊伟 杨院生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1949-1956,共8页
The fatigue behavior of friction stir spot welded (FSSW) AZ31 magnesium alloy sheet joints was investigated by tension- compression of fatigue test. The results suggest that all the fatigue failures occur at the sti... The fatigue behavior of friction stir spot welded (FSSW) AZ31 magnesium alloy sheet joints was investigated by tension- compression of fatigue test. The results suggest that all the fatigue failures occur at the stir zone of the FSSW AZ31 sheet joints, and all cracks initiate at the stir zone outer edge between the upper and lower sheet. When the cycle force equals 1 kN, the crack propagates along the interface of heat-affected zone and thermo-mechanical zone, simultaneously across the direction of force; while the cycle force equals 3 kN, the crack propagates along the diameter of stir zone and shear failure occurs finally. Moreover, the transverse microsections indicate that there is a tongue-like region at the outer edge of stir zone between the two AZ31 sheets, and the direction of tongue-like region is toward outside of the stirred zone and all fatigue cracks initiate at the tongue-like region. 展开更多
关键词 AZ31 Mg alloy sheet friction stir spot welding FATIGUE fatigue failure fatigue crack
下载PDF
Evolving properties of friction stir spot welds between AA1060 and commercially pure copper C11000 被引量:8
11
作者 Mukuna P.MUBIAYI Esther T.AKINLABI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1852-1862,共11页
Friction stir spot welding technique was employed to join pure copper (C11000) and pure aluminium (AA1060) sheets. The evolving properties of the welds produced were characterized. The spot welds were produced by ... Friction stir spot welding technique was employed to join pure copper (C11000) and pure aluminium (AA1060) sheets. The evolving properties of the welds produced were characterized. The spot welds were produced by varying the rotational speed, shoulder plunge depth using different tool geometries. The presence of a copper ring of different lengths was observed on both sides of the welds indicating that Cu extruded upward into the Al sheet which contributed to obtaining strong welds. The microstructure showed the presence of copper particles in the aluminium matrix which led to the presence of various intermetallics observed by the energy dispersive spectroscopy and X-ray diffraction. The maximum tensile failure load increases with an increase in the shoulder plunge depth, except for the weld produced at 800 r/min using a conical pin and a concave shoulder. A nugget pull-out failure mode occurred in all the friction stir spot welds under the lap-shear loading conditions. High peaks of Vickers microhardness values were obtained in the vicinity of the keyhole of most of the samples which correlated to the presence of intermetallics in the stir zone of the welds. 展开更多
关键词 aluminium COPPER friction stir spot welding MICROHARDNESS MICROSTRUCTURE
下载PDF
Microstructure and mechanical properties of dissimilar pinless friction stir spot welded 2A12 aluminum alloy and TC4 titanium alloy joints 被引量:8
12
作者 YANG Xia-wei FENG Wu-yuan +4 位作者 LI Wen-ya CHU Qiang XU Ya-xin MA Tie-jun WANG Wei-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期3075-3084,共10页
The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys c... The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding(FSSW).The joint can be divided into three zones(SZ,TMAZ and HAZ).The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side.At the same rotation speed,the maximum load of welded joints gradually rises with the increase in dwell time.At the same dwell time,the maximum load of the welded joint increases with the increase of the rotational speed.In addition,optimal parameters were obtained in this work,and they are rotation speed of1500r/min,plunge speed of30mm/min,plunge depth of0.3mm and dwell time of15s.The fracture mode of welded joints is interfacial shear fracture.The microhardness of the joint on the Al side distributes in a typical“W”type and is symmetry along the weld center,but the distribution of the microhardness on the Ti side has no obvious change. 展开更多
关键词 MICROSTRUCTURE mechanical properties friction stir spot welded dissimilar joints
下载PDF
Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints 被引量:4
13
作者 Hai-feng Zhang Li Zhou +4 位作者 Wen-lin Li Gao-hui Li Yi-tang Tang Ning Guo Ji-cai Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第4期699-709,共11页
We used refill friction stir spot welding(RFSSW)to join 2-mm-thick AZ91D-H24 magnesium alloy sheets,and we investigated in detail the effect of tool plunge depth on the microstructure and fracture behavior of the join... We used refill friction stir spot welding(RFSSW)to join 2-mm-thick AZ91D-H24 magnesium alloy sheets,and we investigated in detail the effect of tool plunge depth on the microstructure and fracture behavior of the joints.A sound joint surface can be obtained using plunge depths of 2.0 and 2.5 mm.Plunge depth was found to significantly affect the height of the hook,with greater plunge depths corresponding to more severe upward bending of the hook,which compromised the tensile-shear properties of the joints.The hardness reached a minimum at the thermo-mechanically affected zone due to the precipitation phases of this zone as it dissolved into theα-matrix during the welding process.The fracture modes of RFSSW joints can be divided into three types:shear fracture,plug fracture,and shear–plug fracture.Of these,the joint with a shear–plug fracture exhibited the best tensile-shear load of 6400 N. 展开更多
关键词 refill friction stir spot welding AZ91 magnesium alloy MICROSTRUCTURE fracture behavior
下载PDF
Effects of pin geometry on the material flow behavior of friction stir spot welded 2A12 aluminum alloy 被引量:3
14
作者 李政玮 岳玉梅 +2 位作者 马琳 姬书得 柴鹏 《China Welding》 EI CAS 2015年第2期25-29,共5页
A three-dimensional finite volume model was established by the ANSYS FLUENT software to simulate the material flow behavior during the friction stir spot welding (FSSW) process. Effects of the full-threaded pin and ... A three-dimensional finite volume model was established by the ANSYS FLUENT software to simulate the material flow behavior during the friction stir spot welding (FSSW) process. Effects of the full-threaded pin and the reverse-threaded pin on the material flow behavior were mainly discussed. Results showed that the biggest material flow velocity appeared at the outer edge of the tool shoulder. The velocity value became smaller with the increase of the distance away from the tool surface. In general, material flows downwards along the pin thread when the full-threaded pin is used. Meanwhile, both the materials of the upper and the lower plates flow towards the lap interface along the pin thread when the reverse-threaded pin is used. The numerical simulation results were investigated by experiment, in which 2A12 aluminum alloy was used as the research object. The effective sheet thickness (EST) and stir zone (SZ) width of the joint by the reverse-threaded pin were much bigger than those by the full-threaded pin. Accordingly, cross tension failure load of the joint by the reverse-threaded pin is 23% bigger than the joint by the full-threaded pin. 展开更多
关键词 friction stir spot welding pin geometry material flow behavior numerical simulation
下载PDF
Comparison of microstructure and mechanical properties of conventional and refilled friction stir spot welds in AA6061-T6 using filler plate 被引量:1
15
作者 S.VENUKUMAR S.YALAGI S.MUTHUKUMARAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2833-2842,共10页
Friction stir spot welding with refilling by friction forming process (FSSW-FFP) was successfully modified using filler plate. Both of this new refilling technique and conventional friction stir spot welding (FSSW... Friction stir spot welding with refilling by friction forming process (FSSW-FFP) was successfully modified using filler plate. Both of this new refilling technique and conventional friction stir spot welding (FSSW) process were used to weld A1 6061-T6 lap shear specimens and the results were compared. Effects of tool rotational speeds on mechanical and metallurgical properties in both the cases were studied. Static shear strength of refilled weld samples was found to be better than those welded by conventional FSSW process at all tool rotational speeds. This is explained in terms of effective increase in cross-sectional area of weld nugget due to addition of more material from filler plate, thereby eliminating the probe hole. Failure mechanisms were discussed and fracture surfaces were analyzed through scanning electron microscopy (SEM). The hardness profile of the welds exhibited a W-shaped appearance in both the processes and the minimum hardness was measured in the HAZ. 展开更多
关键词 AA6061-T6 A1 alloy friction stir spot welding FSSW-FFP static shear strength
下载PDF
Bonding interface morphology of keyholeless friction stir spot welded joint of AZ31B Mg alloy and DP600 galvanized steel 被引量:1
16
作者 Liu Xiao Zhao Fengling +3 位作者 Niu Hongwei Chen Yang Wang Chenyang Li Xiaoping 《China Welding》 CAS 2021年第4期42-50,共9页
Because the bonding interface of dissimilar metal joint between AZ31 B Mg alloy and DP600 galvanized steel by keyholeless friction stir spot welding(KFSSW)is permanent bonding,the interface morphology cannot be direct... Because the bonding interface of dissimilar metal joint between AZ31 B Mg alloy and DP600 galvanized steel by keyholeless friction stir spot welding(KFSSW)is permanent bonding,the interface morphology cannot be directly observed.If the joint is separated by external force,the original features of bonding interface of joint will be destroyed,which has influence on the accuracy for observation and analysis of the result.In this paper,the coordinates of the key point at the interface of every cross-section at intervals of 0.2 mm were measured and connected into an outline.The outline of all interfaces makes up the three-dimensional morphologies of bonding interface between AZ31 B Mg alloy and DP600 steel by KFSSW,which was constructed by Solidworks software to restore the real mechanical bonding state of joint.Combined with the microhardness analysis of cross-section and results of in-situ tensile test,the unique bonding state and morphology of Mg and steel in the welded joint were confirmed. 展开更多
关键词 keyholeless friction stir spot welding Mg/steel bonding interface morphology MICROHARDNESS in-situ tensile
下载PDF
Pinless Friction Stir Spot Welding of Mg-3Al-1Zn Alloy with Zn Interlayer 被引量:12
17
作者 R.Z.Xu D.R.Ni +2 位作者 Q.Yang C.Z.Liu Z.Y.Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第1期76-88,共13页
With the addition of a thin Zn interlayer, 2.4 mm thick Mg-3AI-1Zn alloy sheets were friction stir spot welded (FSSW) using a pinless tool with fiat, convex and concave shoulder shapes. The results showed that an al... With the addition of a thin Zn interlayer, 2.4 mm thick Mg-3AI-1Zn alloy sheets were friction stir spot welded (FSSW) using a pinless tool with fiat, convex and concave shoulder shapes. The results showed that an alloying reaction took place between the Mg substrate and Zn interlayer during FSSW, forming a discontinuous intermetallics layer composed of dispersive (α-Mg + MgZn) eutectic structure under- neath the shoulder and a Mg-Zn intermetallics bonding zone at the outside of the joints. This alloying reaction increased the bonded area and eliminated the hook defects, thereby producing sound FSSWjoints with a shallow keyhole without hook defects. The increase of plunge depth was beneficial to the Mg-Zn diffusion, thereby increasing the tensile-shear load of the joints. However, excessive plunge depths re- sulted in a decrease of the effective sheet thickness, reducing the strength of the joints. At a small plunge depth, the convex and concave shoulders were more beneficial to the interface reaction than the fiat shoul- der. The maximum joint load of 6.6 kN was achieved by using the concave shoulder at a plunge depth of 1.0 mm. A post-welding heat treatment promoted the dissolution of the discontinuous reaction layer in the joints; however, it led to the occurrence of void defects, influencing the bonding strength. 展开更多
关键词 friction stir spot welding Magnesium alloys Zn interlayer Hook defects
原文传递
Refill friction stir spot welding of 5083-O aluminum alloy 被引量:11
18
作者 Zhiwu Xu Zhengwei Li +1 位作者 Shude Ji Liguo Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第5期878-885,共8页
In this work,refill friction stir spot welding(RFSSW) was used to weld 2 mm-thick 5083-O alloy.The Box–Behnken experimental design was used to investigate the effect of welding parameters on the joint lap shear pro... In this work,refill friction stir spot welding(RFSSW) was used to weld 2 mm-thick 5083-O alloy.The Box–Behnken experimental design was used to investigate the effect of welding parameters on the joint lap shear property.Results showed that a surface indentation of 0.3 mm effectively eliminated the welding defects.Microhardness of the stir zone(SZ) was higher than that of the base material(BM) and the hardness decreased with increasing the heat input during welding.The optimum failure load of 7.72 k N was obtained when using rotating speed of 2300 rpm,plunge depth of 2.4 mm and refilling time of 3.5 s.Three fracture modes were obtained during the lap shear test and all were affected by the hook defect. 展开更多
关键词 Refill friction stir spot welding KEYHOLE Secondary phases MICROHARDNESS Lap shear failure load
原文传递
Flat friction stir spot welding of low carbon steel by double side adjustable tools 被引量:2
19
作者 Xiaopei Wang Yoshiaki Morisada Hidetoshi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第7期1-9,共9页
2 mm low carbon steel plates were successfully welded by the flat friction stir spot welding(FSSW) using double side adjustable tools, by which the keyhole formed in the conventional FSSW was eliminated and a flat sur... 2 mm low carbon steel plates were successfully welded by the flat friction stir spot welding(FSSW) using double side adjustable tools, by which the keyhole formed in the conventional FSSW was eliminated and a flat surface on both the top and bottom sides of the welded joints was obtained. In addition, the hook shape usually generated in the conventional FSSW was eliminated by this technique, and the unbonded interface was parallel to the surface of the sheets. Owing to the enlarged bonded interface width by eliminating the keyhole and the intermixed interface by the adjustable probe, the plug fracture occurred under all the welding conditions in the present study. Due to the suppression of the thickness thinning and elimination of the hook shape, the joint performance was improved in the plug fracture mode. The shear tensile performance was considered to strongly depend on the microstructure in the tip area of the unbonded interface and the maximum shear fracture load of 23.0 kN was achieved in this study. 展开更多
关键词 friction stir spot welding Interface structure Low carbon steel Mechanical properties Microstructure
原文传递
Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes 被引量:1
20
作者 Xiaopei Wang Yoshiaki Morisada Hidetoshi Fujii 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第26期158-168,共11页
Dissimilar welding of AZ31/ZK60 magnesium alloys with a thickness of 2 mm was successfully carried out by the double-sided friction stir spot welding with adjustable probes.A dissimilar joint bearing flat surfaces on ... Dissimilar welding of AZ31/ZK60 magnesium alloys with a thickness of 2 mm was successfully carried out by the double-sided friction stir spot welding with adjustable probes.A dissimilar joint bearing flat surfaces on both sides without a keyhole was obtained and the shear failure load of 8.7±0.5 kN was reached.The role of the adjustable probes has been revealed in detail.In the center of the stir zone,the welding interface structure was heterogeneous around which some distinct oxides still remained,leading to a weak interface strength.On the contrary,the welding interface structure around the shoulder/probe interface was homogeneous with no oxides giving rise to a strong interface strength,which is attributed to the severe material flow introduced by the adjustable probes.In addition,the vicinity outside the shoulder/probe interface,where the fracture occurred during the shear tensile tests,was also strengthened owing to the shearing and torsion by the adju stable probes.Therefore,a stable plug failure can be obtained and the joint properties can be improved. 展开更多
关键词 friction stir spot welding Dissimilar welding Interface strengthening MICROSTRUCTURE Magnesium alloys
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部