The stochastic resonance in paced time-delayed scale-free FitzHugh--Nagumo (FHN) neuronal networks is investigated. We show that an intermediate intensity of additive noise is able to optimally assist the pacemaker ...The stochastic resonance in paced time-delayed scale-free FitzHugh--Nagumo (FHN) neuronal networks is investigated. We show that an intermediate intensity of additive noise is able to optimally assist the pacemaker in imposing its rhythm on the whole ensemble. Furthermore, we reveal that appropriately tuned delays can induce stochastic multiresonances, appearing at every integer multiple of the pacemaker's oscillation period. We conclude that fine-tuned delay lengths and locally acting pacemakers are vital for ensuring optimal conditions for stochastic resonance on complex neuronal networks.展开更多
The effect of small-world connection and noise on of Hodgkin-Huxley neurons are investigated in detail. Some the formation and transition of spiral wave in the networks interesting results are found in our numerical s...The effect of small-world connection and noise on of Hodgkin-Huxley neurons are investigated in detail. Some the formation and transition of spiral wave in the networks interesting results are found in our numerical studies, i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise, iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Ganssian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.展开更多
In this paper,we study how information transmission delays affect the spiking behavior of electrically coupled stochastic Hodgkin-Huxley (HH) neurons on Newman-Watts networks.It is found that the spiking behavior beco...In this paper,we study how information transmission delays affect the spiking behavior of electrically coupled stochastic Hodgkin-Huxley (HH) neurons on Newman-Watts networks.It is found that the spiking behavior becomes the most regular at an optimal time delay,indicating the occurrence of delay-induced coherence resonance-like (CR-like) behavior.Interestingly,there are different CR-like types,depending on the membrane patch size of the neuron.For a smaller patch size,only single CR-like behavior occurs;while for a larger patch size,coherence bi-resonance-like (CBR) behavior appears.These findings show that the delay-induced CR-like behavior is closely related to the channel noise strength,and the coupled neurons may exhibit different spiking behaviors under the interplay of the channel noise and time delay.Therefore,the channel noise should be taken into account in the study of time delay-related spiking activity in stochastic HH neurons.This work provides new insight into the role of channel noise and information transmission delays in realistic neural systems.展开更多
The electric activities of neurons could be changed when ion channel block occurs in the neurons.External forcing currents with diversity are imposed on the regular network of Hodgkin-Huxley(HH) neuron,and target wave...The electric activities of neurons could be changed when ion channel block occurs in the neurons.External forcing currents with diversity are imposed on the regular network of Hodgkin-Huxley(HH) neuron,and target waves are induced to occupy the network.The forcing current I1 is imposed on neurons in a local region with m 0 ×m 0 nodes in the network,neurons in other nodes are imposed with another forcing current I2.Target wave could be developed to occupy the network when the gradient forcing current(I1-I2) exceeds certain threshold,and the formation of target wave is independent of the selection of boundary condition.It is also found that the developed target wave can decrease the negative effect of ion channel block and suppress the spiral wave,and thus channel noise is also considered.The potential mechanism of formation of target wave could be that the gradient forcing current(I1-I2) generates quasi-periodical signal in local area,and the propagation of quasi-periodical signal induces target-like wave due to mutual coupling among neurons in the network.展开更多
Inverse stochastic resonance(ISR)is a phenomenon in which the firing activity of a neuron is inhibited at a certain noise level.In this paper,the effects of potassium channel blockage on ISR in single Hodgkin-Huxley n...Inverse stochastic resonance(ISR)is a phenomenon in which the firing activity of a neuron is inhibited at a certain noise level.In this paper,the effects of potassium channel blockage on ISR in single Hodgkin-Huxley neurons and in small-world networks were investigated.For the single neuron,the ion channel noise-induced ISR phenomenon can occur only in a certain small range of potassium channel blockage ratio.Bifurcation analysis showed that this small range is the bistable region regulated by the external bias current.For small-world networks,the effect of non-homogeneous network blockage on ISR was investigated.The network blockage ratio was used to represent the proportion of potassium-channel-blocked neurons to total network neurons.It is found that an increase in network blockage ratio at small coupling strengths results in shorter ISR duration.When the coupling strength is increased,the ISR is more significant in the case of a large network blockage ratio.The ISR phenomenon is determined by the network blockage ratio,the coupling strength,and the ion channel noise.Our results will provide new perspectives on the observation of ISR in neuroscience experiments.展开更多
The probability of long-range connection among neurons could be changeable in biological neuronal networks. In this paper, the probability of long-range connection between neurons is not fixed at a constant but varies...The probability of long-range connection among neurons could be changeable in biological neuronal networks. In this paper, the probability of long-range connection between neurons is not fixed at a constant but varies in a numerical region (≤p0 ), and then the collective behaviors of neurons are detected. A statistical factor in the two-dimensional space is used to detect the phase transition and robustness of spiral wave in the active network of neurons. It is found that the development of spatiotem-poral pattern depends on the numerical region (≤p0 ) for the probability of long-range connection. Coherence resonance-like behavior is observed due to the fluctuation in the long-range probability. Spiral waves emerge to occupy the network of neurons under an optimized probability of long-range connection, and it shows certain robustness in weak channel noise.展开更多
Time delay and coupling strength are important factors that affect the synchronization of neural networks.In this study,a modular neural network containing subnetworks of different scales was constructed using the Hod...Time delay and coupling strength are important factors that affect the synchronization of neural networks.In this study,a modular neural network containing subnetworks of different scales was constructed using the Hodgkin–Huxley(HH)neural model;i.e.,a small-scale random network was unidirectionally connected to a large-scale small-world network through chemical synapses.Time delays were found to induce multiple synchronization transitions in the network.An increase in coupling strength also promoted synchronization of the network when the time delay was an integer multiple of the firing period of a single neuron.Considering that time delays at different locations in a modular network may have different effects,we explored the influence of time delays within each subnetwork and between two subnetworks on the synchronization of modular networks.We found that when the subnetworks were well synchronized internally,an increase in the time delay within both subnetworks induced multiple synchronization transitions of their own.In addition,the synchronization state of the small-scale network affected the synchronization of the large-scale network.It was surprising to find that an increase in the time delay between the two subnetworks caused the synchronization factor of the modular network to vary periodically,but it had essentially no effect on the synchronization within the receiving subnetwork.By analyzing the phase difference between the two subnetworks,we found that the mechanism of the periodic variation of the synchronization factor of the modular network was the periodic variation of the phase difference.Finally,the generality of the results was demonstrated by investigating modular networks at different scales.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10672140,10972001 and 10832006)Matjaz Perc individually acknowledges the Support from the Slovenian Research Agency (Grant Nos. Z1-9629 and Z1-2032-2547)
文摘The stochastic resonance in paced time-delayed scale-free FitzHugh--Nagumo (FHN) neuronal networks is investigated. We show that an intermediate intensity of additive noise is able to optimally assist the pacemaker in imposing its rhythm on the whole ensemble. Furthermore, we reveal that appropriately tuned delays can induce stochastic multiresonances, appearing at every integer multiple of the pacemaker's oscillation period. We conclude that fine-tuned delay lengths and locally acting pacemakers are vital for ensuring optimal conditions for stochastic resonance on complex neuronal networks.
基金Supported by the Natural Nature Foundation of China under Grant Nos.10747005,10972179the Nature Foundation of Lanzhou University of Technology under Grant No.Q200706
文摘The effect of small-world connection and noise on of Hodgkin-Huxley neurons are investigated in detail. Some the formation and transition of spiral wave in the networks interesting results are found in our numerical studies, i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise, iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Ganssian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.
基金supported by the Natural Science Foundation of Shandong Province in China (ZR2009AM016)
文摘In this paper,we study how information transmission delays affect the spiking behavior of electrically coupled stochastic Hodgkin-Huxley (HH) neurons on Newman-Watts networks.It is found that the spiking behavior becomes the most regular at an optimal time delay,indicating the occurrence of delay-induced coherence resonance-like (CR-like) behavior.Interestingly,there are different CR-like types,depending on the membrane patch size of the neuron.For a smaller patch size,only single CR-like behavior occurs;while for a larger patch size,coherence bi-resonance-like (CBR) behavior appears.These findings show that the delay-induced CR-like behavior is closely related to the channel noise strength,and the coupled neurons may exhibit different spiking behaviors under the interplay of the channel noise and time delay.Therefore,the channel noise should be taken into account in the study of time delay-related spiking activity in stochastic HH neurons.This work provides new insight into the role of channel noise and information transmission delays in realistic neural systems.
基金supported by the National Nature Science Foundation of China (Grant Nos. 11265008 and 11272242)
文摘The electric activities of neurons could be changed when ion channel block occurs in the neurons.External forcing currents with diversity are imposed on the regular network of Hodgkin-Huxley(HH) neuron,and target waves are induced to occupy the network.The forcing current I1 is imposed on neurons in a local region with m 0 ×m 0 nodes in the network,neurons in other nodes are imposed with another forcing current I2.Target wave could be developed to occupy the network when the gradient forcing current(I1-I2) exceeds certain threshold,and the formation of target wave is independent of the selection of boundary condition.It is also found that the developed target wave can decrease the negative effect of ion channel block and suppress the spiral wave,and thus channel noise is also considered.The potential mechanism of formation of target wave could be that the gradient forcing current(I1-I2) generates quasi-periodical signal in local area,and the propagation of quasi-periodical signal induces target-like wave due to mutual coupling among neurons in the network.
基金the National Natural Science Foundation of China(No.12175080)the Fundamental Research Funds for the Central Universities(No.CCNU22JC009),China.
文摘Inverse stochastic resonance(ISR)is a phenomenon in which the firing activity of a neuron is inhibited at a certain noise level.In this paper,the effects of potassium channel blockage on ISR in single Hodgkin-Huxley neurons and in small-world networks were investigated.For the single neuron,the ion channel noise-induced ISR phenomenon can occur only in a certain small range of potassium channel blockage ratio.Bifurcation analysis showed that this small range is the bistable region regulated by the external bias current.For small-world networks,the effect of non-homogeneous network blockage on ISR was investigated.The network blockage ratio was used to represent the proportion of potassium-channel-blocked neurons to total network neurons.It is found that an increase in network blockage ratio at small coupling strengths results in shorter ISR duration.When the coupling strength is increased,the ISR is more significant in the case of a large network blockage ratio.The ISR phenomenon is determined by the network blockage ratio,the coupling strength,and the ion channel noise.Our results will provide new perspectives on the observation of ISR in neuroscience experiments.
基金supported by the National Nature Science Foundation of China (Grant Nos.11265008 and 10972179)
文摘The probability of long-range connection among neurons could be changeable in biological neuronal networks. In this paper, the probability of long-range connection between neurons is not fixed at a constant but varies in a numerical region (≤p0 ), and then the collective behaviors of neurons are detected. A statistical factor in the two-dimensional space is used to detect the phase transition and robustness of spiral wave in the active network of neurons. It is found that the development of spatiotem-poral pattern depends on the numerical region (≤p0 ) for the probability of long-range connection. Coherence resonance-like behavior is observed due to the fluctuation in the long-range probability. Spiral waves emerge to occupy the network of neurons under an optimized probability of long-range connection, and it shows certain robustness in weak channel noise.
基金supported by the National Natural Science Foundation of China(No.12175080)the Fundamental Research Funds for the Central Universities,China(No.CCNU22JC009)。
文摘Time delay and coupling strength are important factors that affect the synchronization of neural networks.In this study,a modular neural network containing subnetworks of different scales was constructed using the Hodgkin–Huxley(HH)neural model;i.e.,a small-scale random network was unidirectionally connected to a large-scale small-world network through chemical synapses.Time delays were found to induce multiple synchronization transitions in the network.An increase in coupling strength also promoted synchronization of the network when the time delay was an integer multiple of the firing period of a single neuron.Considering that time delays at different locations in a modular network may have different effects,we explored the influence of time delays within each subnetwork and between two subnetworks on the synchronization of modular networks.We found that when the subnetworks were well synchronized internally,an increase in the time delay within both subnetworks induced multiple synchronization transitions of their own.In addition,the synchronization state of the small-scale network affected the synchronization of the large-scale network.It was surprising to find that an increase in the time delay between the two subnetworks caused the synchronization factor of the modular network to vary periodically,but it had essentially no effect on the synchronization within the receiving subnetwork.By analyzing the phase difference between the two subnetworks,we found that the mechanism of the periodic variation of the synchronization factor of the modular network was the periodic variation of the phase difference.Finally,the generality of the results was demonstrated by investigating modular networks at different scales.