This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted b...This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted by noises and time delays. Based on the graph theory, stochastic tools, and the Lyapunov function method, we derive the sufficient conditions under which the systems would reach stochastic bounded consensus in mean square with the protocol we designed. Finally, a numerical simulation is illustrated to check the effectiveness of the proposed algorithms.展开更多
A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ulti...A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ultimate boundedness of the solution of the model was obtained by using the method of Lyapunov function and the generalized Ito's formula. At last,asymptotic behaviors of the solution were discussed according to the value of R0. If R0< 1,the solution of the model oscillates around a steady state, which is the diseases free equilibrium of the corresponding deterministic model,and if R0> 1,it fluctuates around the endemic equilibrium of the deterministic model.展开更多
This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instant...This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instants from its neighbours or the virtual leader with a time-varying reference state, and the measurements are corrupted by random noises. The probability limit theory and the algebra graph theory are employed to derive the necessary and sufficient conditions guaranteeing the mean square bounded consensus tracking. It is shown that the maximum allowable upper boundary of the sampling period simultaneously depends on the constant feedback gains and the network topology. Furthermore, the effects of the sampling period on the tracking performance are analysed. It turns out that from the view point of the sampling period, there is a trade-off between the tracking speed and the static tracking error. Simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded conse...In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a uni...A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a unique global positive solution;(2) the results reveal that the solution of this epidemic model will be stochastically ultimately bounded,and the non-linear SDE admits a unique stationary distribution under certain parametric conditions;(3) the coefficients play an important role in the extinction of the diseases.展开更多
This paper addresses an infinite horizon distributed H2/H∞ filtering for discrete-time systems under conditions of bounded power and white stochastic signals. The filter algorithm is designed by computing a pair of g...This paper addresses an infinite horizon distributed H2/H∞ filtering for discrete-time systems under conditions of bounded power and white stochastic signals. The filter algorithm is designed by computing a pair of gains namely the estimator and the coupling. Herein, we implement a filter to estimate unknown parameters such that the closed-loop multi-sensor accomplishes the desired performances of the proposed H2 and H∞ schemes over a finite horizon. A switched strategy is implemented to switch between the states once the operation conditions have changed due to disturbances. It is shown that the stability of the overall filtering-error system with H2/H∞ performance can be established if a piecewise-quadratic Lyapunov function is properly constructed. A simulation example is given to show the effectiveness of the proposed approach.展开更多
The use of flocculants to collect/extract microorganisms is of great practical significance for the development of the application of microorganisms. In this paper, a high-dimensional nonlinear stochastic differential...The use of flocculants to collect/extract microorganisms is of great practical significance for the development of the application of microorganisms. In this paper, a high-dimensional nonlinear stochastic differential equation model is constructed to describe the continuous culture of microorganisms with multiple nutrients and the flocculation process of microorganisms. The study of the dynamics of this model can provide feasible control strategies for the collection/extraction of microorganisms. The main theoretical results are sufficient conditions for the permanence and extinction of the stochastic differential equation model, which are also extensions of some results in the existing literatures. In addition, through numerical simulations, we vividly demonstrate the statistical characteristics of the stochastic differential equation model.展开更多
The problem of distributed fusion and random observation loss for mobile sensor networks is investigated herein.In view of the fact that the measured values,sampling frequency and noise of various sensors are differen...The problem of distributed fusion and random observation loss for mobile sensor networks is investigated herein.In view of the fact that the measured values,sampling frequency and noise of various sensors are different,the observation model of a heterogeneous network is constructed.A binary random variable is introduced to describe the drop of observation component and the topology switching problem caused by complete observation loss is also considered.A cubature information filtering algorithm is adopted to design local filters for each observer to suppress the negative effects of measurement noise.To derive a consistent and accurate estimation result,a novel weighted average consensus-based filtering approach is put forward.For the sensor that suffers from observation loss,its local prediction information vector is fused with the information contribution vectors of the neighbors to obtain the local estimation.Then the consensus weight matrix is designed for consensus-based distributed collaborative information fusion.The boundness of the estimation errors is proved by employing the stochastic stability theory.In the end,two numerical examples are offered to assert the validity of the presented method.展开更多
In this paper,stochastic properties of solution for a chemostat model with a distributed delay and random disturbance are studied,and we use distribution delay to simulate the delay in nutrient conversion.By the linea...In this paper,stochastic properties of solution for a chemostat model with a distributed delay and random disturbance are studied,and we use distribution delay to simulate the delay in nutrient conversion.By the linear chain technique,we transform the stochastic chemostat model with weak kernel into an equivalent degenerate system which contains three equations.First,we state that this model has a unique global positive solution for any initial value,which is helpful to explore its stochastic properties.Furthermore,we prove the stochastic ultimate boundness of the solution of system.Then sufficient conditions for solution of the system tending toward the boundary equilibrium point at exponential rate are established,which means the microorganism will be extinct.Moreover,we also obtain some sufficient conditions for ergodicity of solution of this system by constructing some suitable stochastic Lyapunov functions.Finally,we provide some numerical examples to illustrate theoretical results,and some conclusions and analysis are given.展开更多
This paper investigates a stochastic Holling II predator-prey model with Levy jumps and habit complexity.It is first proved that the established model admits a unique global positive solution by employing the Lyapunov...This paper investigates a stochastic Holling II predator-prey model with Levy jumps and habit complexity.It is first proved that the established model admits a unique global positive solution by employing the Lyapunov technique,and the stochastic ultimate boundedness of this positive solution is also obtained.Sufficient conditions are established for the extinction and persistence of this solution.Moreover,some numerical simulations are carried out to support the obtained results.展开更多
A stochastic two-species Schoener's competitive model is proposed and investigated. Sufficient conditions for the existence of global positive solutions, boundedness~ uniform continuity, global attractivity stochasti...A stochastic two-species Schoener's competitive model is proposed and investigated. Sufficient conditions for the existence of global positive solutions, boundedness~ uniform continuity, global attractivity stochastic permanence and extinction are obtained. More- over, the upper-growth rate and the average in time of the sample paths of solutions are also estimated. Finally, some figures are introduced to illustrate the main results.展开更多
In this paper, we formulate a single-species model of contraception control with white noise on the death rate. Firstly, the uniqueness of global positive solution of the model is proved. Secondly, uniformly bounded m...In this paper, we formulate a single-species model of contraception control with white noise on the death rate. Firstly, the uniqueness of global positive solution of the model is proved. Secondly, uniformly bounded mean of solution is obtained by using the Liyapunov function and Chebyshev inequality. Lastly, stochastic global asymptotic stability of zero equilibriums is analyzed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61573156,61273126,61503142,61272382,and 61573154)the Fundamental Research Funds for the Central Universities(Grant No.x2zd D2153620)
文摘This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted by noises and time delays. Based on the graph theory, stochastic tools, and the Lyapunov function method, we derive the sufficient conditions under which the systems would reach stochastic bounded consensus in mean square with the protocol we designed. Finally, a numerical simulation is illustrated to check the effectiveness of the proposed algorithms.
基金National Natural Science Foundations of China(No.11071259,No.11371374)Research Fund for the Doctoral Program of Higher Education of China(No.20110162110060)
文摘A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ultimate boundedness of the solution of the model was obtained by using the method of Lyapunov function and the generalized Ito's formula. At last,asymptotic behaviors of the solution were discussed according to the value of R0. If R0< 1,the solution of the model oscillates around a steady state, which is the diseases free equilibrium of the corresponding deterministic model,and if R0> 1,it fluctuates around the endemic equilibrium of the deterministic model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,60973095,60804013,and 61104092)the Fundamental Research Funds for the Central Universities,China(Grant Nos.JUSRP111A44,JUSRP21011, and JUSRP11233)+1 种基金the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology(HUST),China(Grant No.DMETKF2010008)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instants from its neighbours or the virtual leader with a time-varying reference state, and the measurements are corrupted by random noises. The probability limit theory and the algebra graph theory are employed to derive the necessary and sufficient conditions guaranteeing the mean square bounded consensus tracking. It is shown that the maximum allowable upper boundary of the sampling period simultaneously depends on the constant feedback gains and the network topology. Furthermore, the effects of the sampling period on the tracking performance are analysed. It turns out that from the view point of the sampling period, there is a trade-off between the tracking speed and the static tracking error. Simulations are provided to demonstrate the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,60973095,60804013,and 61104092)the Fundamental Research Funds for the Central Universities,China(Grant Nos.JUSRP111A44,JUSRP21011,and JUSRP11233)+1 种基金the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology,HUST,China(Grant No.DMETKF2010008)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.
基金Natural Science Foundation of Hunan University of Technology,China(No.2012HZX08)the Special Foundation of National Independent Innovation Demonstration Area Construction of Zhuzhou(Applied Basic Research),China
文摘A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a unique global positive solution;(2) the results reveal that the solution of this epidemic model will be stochastically ultimately bounded,and the non-linear SDE admits a unique stationary distribution under certain parametric conditions;(3) the coefficients play an important role in the extinction of the diseases.
基金supported by the Deanship of Scientific Research(DSR)at KFUPM through distinguished professorship project(161065)
文摘This paper addresses an infinite horizon distributed H2/H∞ filtering for discrete-time systems under conditions of bounded power and white stochastic signals. The filter algorithm is designed by computing a pair of gains namely the estimator and the coupling. Herein, we implement a filter to estimate unknown parameters such that the closed-loop multi-sensor accomplishes the desired performances of the proposed H2 and H∞ schemes over a finite horizon. A switched strategy is implemented to switch between the states once the operation conditions have changed due to disturbances. It is shown that the stability of the overall filtering-error system with H2/H∞ performance can be established if a piecewise-quadratic Lyapunov function is properly constructed. A simulation example is given to show the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China (Grant No. 11971055)the Beijing Natural Science Foundation, China (Grant No. 1202019)。
文摘The use of flocculants to collect/extract microorganisms is of great practical significance for the development of the application of microorganisms. In this paper, a high-dimensional nonlinear stochastic differential equation model is constructed to describe the continuous culture of microorganisms with multiple nutrients and the flocculation process of microorganisms. The study of the dynamics of this model can provide feasible control strategies for the collection/extraction of microorganisms. The main theoretical results are sufficient conditions for the permanence and extinction of the stochastic differential equation model, which are also extensions of some results in the existing literatures. In addition, through numerical simulations, we vividly demonstrate the statistical characteristics of the stochastic differential equation model.
基金supported by the Science and Technology Innovation 2030-Key Project of“New Generation Artificial Intelligence”of China(No.2020AAA0108200)the National Natural Science Foundation of China(Nos.61873011,61922008,61973013,61803014)+2 种基金the Innovation Zone Project of China(No.18-163-00-TS-001-001-34)the Defense Industrial Technology Development Program of China(No.JCKY2019601C106)the Special Research Project of Chinese Civil Aircraft,China。
文摘The problem of distributed fusion and random observation loss for mobile sensor networks is investigated herein.In view of the fact that the measured values,sampling frequency and noise of various sensors are different,the observation model of a heterogeneous network is constructed.A binary random variable is introduced to describe the drop of observation component and the topology switching problem caused by complete observation loss is also considered.A cubature information filtering algorithm is adopted to design local filters for each observer to suppress the negative effects of measurement noise.To derive a consistent and accurate estimation result,a novel weighted average consensus-based filtering approach is put forward.For the sensor that suffers from observation loss,its local prediction information vector is fused with the information contribution vectors of the neighbors to obtain the local estimation.Then the consensus weight matrix is designed for consensus-based distributed collaborative information fusion.The boundness of the estimation errors is proved by employing the stochastic stability theory.In the end,two numerical examples are offered to assert the validity of the presented method.
基金supported by the National Natural Science Foundation of China(Nos.11771044 and 11871007).
文摘In this paper,stochastic properties of solution for a chemostat model with a distributed delay and random disturbance are studied,and we use distribution delay to simulate the delay in nutrient conversion.By the linear chain technique,we transform the stochastic chemostat model with weak kernel into an equivalent degenerate system which contains three equations.First,we state that this model has a unique global positive solution for any initial value,which is helpful to explore its stochastic properties.Furthermore,we prove the stochastic ultimate boundness of the solution of system.Then sufficient conditions for solution of the system tending toward the boundary equilibrium point at exponential rate are established,which means the microorganism will be extinct.Moreover,we also obtain some sufficient conditions for ergodicity of solution of this system by constructing some suitable stochastic Lyapunov functions.Finally,we provide some numerical examples to illustrate theoretical results,and some conclusions and analysis are given.
基金supported by the National Natural Science Foundation of China(Nos.11901398,11671149,11871225 and 11771102)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011350)the Fundamental Research Funds for the Central Universities(No.2018MS58).
文摘This paper investigates a stochastic Holling II predator-prey model with Levy jumps and habit complexity.It is first proved that the established model admits a unique global positive solution by employing the Lyapunov technique,and the stochastic ultimate boundedness of this positive solution is also obtained.Sufficient conditions are established for the extinction and persistence of this solution.Moreover,some numerical simulations are carried out to support the obtained results.
基金This work was supported by the National Natural Science Foundation of P. R. China (No. 11171081, 11171056), the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. HIT.NSRIF.2011094), and the Scientific Research Foundation of Harbin Institute of Technology at Weihai (No. HIT (WH) ZB201103).
文摘A stochastic two-species Schoener's competitive model is proposed and investigated. Sufficient conditions for the existence of global positive solutions, boundedness~ uniform continuity, global attractivity stochastic permanence and extinction are obtained. More- over, the upper-growth rate and the average in time of the sample paths of solutions are also estimated. Finally, some figures are introduced to illustrate the main results.
基金supported by the National Natural Sciences Foundation of China(11371313)the Sciences Foundation of Yuncheng University(XK2012003)
文摘In this paper, we formulate a single-species model of contraception control with white noise on the death rate. Firstly, the uniqueness of global positive solution of the model is proved. Secondly, uniformly bounded mean of solution is obtained by using the Liyapunov function and Chebyshev inequality. Lastly, stochastic global asymptotic stability of zero equilibriums is analyzed.