Multiple objective stochastic linear programming is a relevant topic. As a matter of fact, many practical problems ranging from portfolio selection to water resource management may be cast into this framework. Severe ...Multiple objective stochastic linear programming is a relevant topic. As a matter of fact, many practical problems ranging from portfolio selection to water resource management may be cast into this framework. Severe limitations on objectivity are encountered in this field because of the simultaneous presence of randomness and conflicting goals. In such a turbulent environment, the mainstay of rational choice cannot hold and it is virtually impossible to provide a truly scientific foundation for an optimal decision. In this paper, we resort to the bounded rationality principle to introduce satisfying solution for multiobjective stochastic linear programming problems. These solutions that are based on the chance-constrained paradigm are characterized under the assumption of normality of involved random variables. Ways for singling out such solutions are also discussed and a numerical example provided for the sake of illustration.展开更多
This thesis presents the combination of the stochastic programming and generalized goal programming. We puts forward several generalized goal programming models with stochastic parameter--stochastic generalized goal p...This thesis presents the combination of the stochastic programming and generalized goal programming. We puts forward several generalized goal programming models with stochastic parameter--stochastic generalized goal programming. Furthermore, we probe into the theory. and algorithm of these models. At last, this method was applied to an example of an industrial problem.展开更多
This paper discussed an extended model for flexibility analysis of chemical process. Under uncertainty, probability density function is used to describe uncertain parameters instead of hyper-rectangle, and chanceconst...This paper discussed an extended model for flexibility analysis of chemical process. Under uncertainty, probability density function is used to describe uncertain parameters instead of hyper-rectangle, and chanceconstrained programming is a feasible way to deal with the violation of constraints. Because the feasible region of control variables would change along with uncertain parameters, its smallest acceptable size threshold is presented to ensure the controllability condition. By synthesizing the considerations mentioned above, a modified model can describe the flexibility analysis problem more exactly. Then a hybrid algorithm, which integrates stochastic simulation and genetic algorithm, is applied to solve this model and maximize the flexibility region. Both numerical and chemical process examples are presented to demonstrate the effectiveness of the method.展开更多
文摘Multiple objective stochastic linear programming is a relevant topic. As a matter of fact, many practical problems ranging from portfolio selection to water resource management may be cast into this framework. Severe limitations on objectivity are encountered in this field because of the simultaneous presence of randomness and conflicting goals. In such a turbulent environment, the mainstay of rational choice cannot hold and it is virtually impossible to provide a truly scientific foundation for an optimal decision. In this paper, we resort to the bounded rationality principle to introduce satisfying solution for multiobjective stochastic linear programming problems. These solutions that are based on the chance-constrained paradigm are characterized under the assumption of normality of involved random variables. Ways for singling out such solutions are also discussed and a numerical example provided for the sake of illustration.
文摘This thesis presents the combination of the stochastic programming and generalized goal programming. We puts forward several generalized goal programming models with stochastic parameter--stochastic generalized goal programming. Furthermore, we probe into the theory. and algorithm of these models. At last, this method was applied to an example of an industrial problem.
文摘This paper discussed an extended model for flexibility analysis of chemical process. Under uncertainty, probability density function is used to describe uncertain parameters instead of hyper-rectangle, and chanceconstrained programming is a feasible way to deal with the violation of constraints. Because the feasible region of control variables would change along with uncertain parameters, its smallest acceptable size threshold is presented to ensure the controllability condition. By synthesizing the considerations mentioned above, a modified model can describe the flexibility analysis problem more exactly. Then a hybrid algorithm, which integrates stochastic simulation and genetic algorithm, is applied to solve this model and maximize the flexibility region. Both numerical and chemical process examples are presented to demonstrate the effectiveness of the method.