In this paper, we construct a composite Milstein method for nonlinear stochastic differential delay equations. Then we analyze the mean square stability for this method and obtain the step size condition under which t...In this paper, we construct a composite Milstein method for nonlinear stochastic differential delay equations. Then we analyze the mean square stability for this method and obtain the step size condition under which the composite Milstein method is mean square stable. Moreover, we get the step size condition under which the composite Milstein method is global mean square stable. A nonlinear test stochastic differential delay equation is given for numerical tests. The results of numerical tests verify the theoretical results proposed.展开更多
In the present paper we first obtain the comparison principle for the nonlinear stochastic differentialdelay equations with Markovian switching. Later, using this comparison principle, we obtain some stabilitycriteria...In the present paper we first obtain the comparison principle for the nonlinear stochastic differentialdelay equations with Markovian switching. Later, using this comparison principle, we obtain some stabilitycriteria, including stability in probability, asymptotic stability in probability, stability in the pth mean, asymptoticstability in the pth mean and the pth moment exponential stability of such equations. Finally, an example isgiven to illustrate the effectiveness of our results.展开更多
We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are i...We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are investigated under the generalized Khasminskii-type condition.展开更多
Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential d...Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential delay equations with small noises, where the coefficients are allowed to be highly nonlinear growth with respect to the variables. Moreover, we obtain the central limit theorem for stochastic differential delay equations which the coefficients are polynomial growth with respect to the delay variables.展开更多
This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such a...This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.展开更多
It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventual...It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.展开更多
Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic mo...Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic model based only on the class of human infectious. The consistency of the model is established by proving that the stochastic delay differential equation describing the model has a unique positive global solution. The extinction of the disease is studied through the analysis of the stability of the disease-free equilibrium state and the persistence of the model. Finally, we introduce some numerical simulations to illustrate the obtained results.展开更多
In this paper, we study the stochastic maximum principle for optimal control prob- lem of anticipated forward-backward system with delay and Lovy processes as the random dis- turbance. This control system can be descr...In this paper, we study the stochastic maximum principle for optimal control prob- lem of anticipated forward-backward system with delay and Lovy processes as the random dis- turbance. This control system can be described by the anticipated forward-backward stochastic differential equations with delay and L^vy processes (AFBSDEDLs), we first obtain the existence and uniqueness theorem of adapted solutions for AFBSDEDLs; combining the AFBSDEDLs' preliminary result with certain classical convex variational techniques, the corresponding maxi- mum principle is proved.展开更多
In this paper, a split-step 0 (SST) method is introduced and used to solve the non- linear neutral stochastic differential delay equations with Poisson jumps (NSDDEwPJ). The mean square asymptotic stability of the...In this paper, a split-step 0 (SST) method is introduced and used to solve the non- linear neutral stochastic differential delay equations with Poisson jumps (NSDDEwPJ). The mean square asymptotic stability of the SST method for nonlinear neutral stochastic differential equations with Poisson jumps is studied. It is proved that under the one-sided Lipschitz condition and the linear growth condition, the SST method with ∈ E (0, 2 -√2) is asymptotically mean square stable for all positive step sizes, and the SST method with ∈ E (2 -√2, 1) is asymptotically mean square stable for some step sizes. It is also proved in this paper that the SST method possesses a bounded absorbing set which is independent of initial data, and the mean square dissipativity of this method is also proved.展开更多
In this paper, T-stability of the Euler-Maruyama method is taken into account for linear stochastic delay differential equations with multiplicative noise and constant time lag in the Under a certain condition for coe...In this paper, T-stability of the Euler-Maruyama method is taken into account for linear stochastic delay differential equations with multiplicative noise and constant time lag in the Under a certain condition for coefficients, T-stability of the numerical scheme is researched. Moreover, some numerical examples will be presented to support the theoretical results.展开更多
In this paper,we obtain suffcient conditions for the stability in p-th moment of the analytical solutions and the mean square stability of a stochastic differential equation with unbounded delay proposed in [6,10] usi...In this paper,we obtain suffcient conditions for the stability in p-th moment of the analytical solutions and the mean square stability of a stochastic differential equation with unbounded delay proposed in [6,10] using the explicit Euler method.展开更多
In this paper,by constructing proper Lyapunov functions,exponential stability criteria for stochastic delay partial differential equations are obtained. An example is shown to illustrate the results.
The key aim of this paper is to show the strong convergence of the truncated Euler-Maruyama method for neutral stochastic differential delay equations(NSDDEs)with Markovian switching(MS)without the linear growth condi...The key aim of this paper is to show the strong convergence of the truncated Euler-Maruyama method for neutral stochastic differential delay equations(NSDDEs)with Markovian switching(MS)without the linear growth condition.We present the truncated Euler-Maruyama method of NSDDEs-MS and consider its moment boundedness under the local Lipschitz condition plus Khasminskii-type condition.We also study its strong convergence rates at time T and over a finite interval[0,T].Some numerical examples are given to illustrate the theoretical results.展开更多
The authors discuss one type of general forward-backward stochastic differential equations (FBSDEs) with Ito's stochastic delayed equations as the forward equations and anticipated backward stochastic differential...The authors discuss one type of general forward-backward stochastic differential equations (FBSDEs) with Ito's stochastic delayed equations as the forward equations and anticipated backward stochastic differential equations as the backward equations.The existence and uniqueness results of the general FBSDEs are obtained.In the framework of the general FBSDEs in this paper,the explicit form of the optimal control for linear-quadratic stochastic optimal control problem with delay and the Nash equilibrium point for nonzero sum differential games problem with delay are obtained.展开更多
We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transf...We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transformation argument, we establish the quadratic transportation inequalities for the law of the mild solution of those equations driven by fractional Brownian motion under the L2 metric and the uniform metric.展开更多
Motivated by a duopoly game problem,the authors study an optimal control problem where the system is driven by Brownian motion and Poisson point process and has elephant memory for the control variable and the state v...Motivated by a duopoly game problem,the authors study an optimal control problem where the system is driven by Brownian motion and Poisson point process and has elephant memory for the control variable and the state variable.Firstly,the authors establish the unique solvability of an anticipated backward stochastic differential equation,derive a stochastic maximum principle,and prove a verification theorem for the aforementioned optimal control problem.Furthermore,the authors generalize these results to nonzero-sum stochastic differential game problems.Finally,the authors apply the theoretical results to the duopoly game problem and obtain the corresponding Nash equilibrium solution.展开更多
This paper is concerned with the optimal control problems of forward-backward delay systems involving impulse controls. The authors establish a stochastic maximum principle for this kind of systems. The most distingui...This paper is concerned with the optimal control problems of forward-backward delay systems involving impulse controls. The authors establish a stochastic maximum principle for this kind of systems. The most distinguishing features of the proposed problem are that the control variables consist of regular and impulsive controls, both with time delay, and that the domain of regular control is not necessarily convex. The authors obtain the necessary and sufficient conditions for optimal controls,which have potential applications in mathematical finance.展开更多
This paper focuses on optimal control of nonlinear stochastic delay system constructed through Teugels martingales associated with Lévy processes and standard Brownian motion,in which finite horizon is extended t...This paper focuses on optimal control of nonlinear stochastic delay system constructed through Teugels martingales associated with Lévy processes and standard Brownian motion,in which finite horizon is extended to infinite horizon.In order to describe the interacting many-body system,the expectation values of state processes are added to the concerned system.Further,sufficient and necessary conditions are established under convexity assumptions of the control domain.Finally,an example is given to demonstrate the application of the theory.展开更多
In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsuran...In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsurance to transfer part of the insurance claims risk.In addition to reinsurance,she also can invests her surplus in a financial market,which is consisted of a risk-free asset and a risky asset described by Heston’s stochastic volatility(SV)model.Considering the performance-related capital flow,the insurer’s wealth process is modeled by a stochastic differential delay equation.The insurer’s target is to find the optimal investment and proportional reinsurance strategy to maximize the expected exponential utility of combined terminal wealth.We explicitly derive the optimal strategy and the value function.Finally,we provide some numerical examples to illustrate our results.展开更多
This paper considers a worst-case investment optimization problem with delay for a fund manager who is in a crash-threatened financial market. Driven by existing of capital inflow/outflow related to history performanc...This paper considers a worst-case investment optimization problem with delay for a fund manager who is in a crash-threatened financial market. Driven by existing of capital inflow/outflow related to history performance, we investigate the optimal investment strategies under the worst-case scenario and the stochastic control framework with delay. The financial market is assumed to be either in a normal state(crash-free) or in a crash state. In the normal state the prices of risky assets behave as geometric Brownian motion, and in the crash state the prices of risky assets suddenly drop by a certain relative amount, which induces to a dropping of the total wealth relative to that of crash-free state. We obtain the ordinary differential equations satisfied by the optimal investment strategies and the optimal value functions under the power and exponential utilities, respectively. Finally, a numerical simulation is provided to illustrate the sensitivity of the optimal strategies with respective to the model parameters.展开更多
基金Supported by National Natural Science Foundation of China(No.61272024)Anhui Provincial Natural Science Foundation(No.11040606M06)
文摘In this paper, we construct a composite Milstein method for nonlinear stochastic differential delay equations. Then we analyze the mean square stability for this method and obtain the step size condition under which the composite Milstein method is mean square stable. Moreover, we get the step size condition under which the composite Milstein method is global mean square stable. A nonlinear test stochastic differential delay equation is given for numerical tests. The results of numerical tests verify the theoretical results proposed.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10171009) Tianyuan Young Fund of China (Grant No. 10226009).
文摘In the present paper we first obtain the comparison principle for the nonlinear stochastic differentialdelay equations with Markovian switching. Later, using this comparison principle, we obtain some stabilitycriteria, including stability in probability, asymptotic stability in probability, stability in the pth mean, asymptoticstability in the pth mean and the pth moment exponential stability of such equations. Finally, an example isgiven to illustrate the effectiveness of our results.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61876192,12061034)the Natural Science Foundation of Jiangxi(Grant Nos.20192ACBL21007,2018ACB21001)+1 种基金the Fundamental Research Funds for the Central Universities(CZT20020)Academic Team in Universities(KTZ20051).
文摘We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are investigated under the generalized Khasminskii-type condition.
基金The authors are grateful to the anonymous referees for their valuable comments and corrections. This work was supported in part by the National Natural Science Foundation of China (Grant No. 11401592), the Natural Science Foundation of Hunan Province (No. 13JJ5043), and the Mathematics and Interdisciplinary Sciences Project of Central South University.
文摘Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential delay equations with small noises, where the coefficients are allowed to be highly nonlinear growth with respect to the variables. Moreover, we obtain the central limit theorem for stochastic differential delay equations which the coefficients are polynomial growth with respect to the delay variables.
基金The National Natural Science Foundation of China (No.10671078)
文摘This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.
文摘It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.
文摘Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic model based only on the class of human infectious. The consistency of the model is established by proving that the stochastic delay differential equation describing the model has a unique positive global solution. The extinction of the disease is studied through the analysis of the stability of the disease-free equilibrium state and the persistence of the model. Finally, we introduce some numerical simulations to illustrate the obtained results.
基金Supported by the National Natural Science Foundation(11221061 and 61174092)111 project(B12023),the National Science Fund for Distinguished Young Scholars of China(11125102)Youth Foundation of QiLu Normal Institute(2012L1010)
文摘In this paper, we study the stochastic maximum principle for optimal control prob- lem of anticipated forward-backward system with delay and Lovy processes as the random dis- turbance. This control system can be described by the anticipated forward-backward stochastic differential equations with delay and L^vy processes (AFBSDEDLs), we first obtain the existence and uniqueness theorem of adapted solutions for AFBSDEDLs; combining the AFBSDEDLs' preliminary result with certain classical convex variational techniques, the corresponding maxi- mum principle is proved.
文摘In this paper, a split-step 0 (SST) method is introduced and used to solve the non- linear neutral stochastic differential delay equations with Poisson jumps (NSDDEwPJ). The mean square asymptotic stability of the SST method for nonlinear neutral stochastic differential equations with Poisson jumps is studied. It is proved that under the one-sided Lipschitz condition and the linear growth condition, the SST method with ∈ E (0, 2 -√2) is asymptotically mean square stable for all positive step sizes, and the SST method with ∈ E (2 -√2, 1) is asymptotically mean square stable for some step sizes. It is also proved in this paper that the SST method possesses a bounded absorbing set which is independent of initial data, and the mean square dissipativity of this method is also proved.
基金Supported by the National Natural Science Foundation of China(51008084)the Natural Science Foundation of Guangdong Province(9451009001002753)
文摘In this paper, T-stability of the Euler-Maruyama method is taken into account for linear stochastic delay differential equations with multiplicative noise and constant time lag in the Under a certain condition for coefficients, T-stability of the numerical scheme is researched. Moreover, some numerical examples will be presented to support the theoretical results.
基金Supported by the Special Foundation for Young Talent of Fujian Province (2008F306010002)
文摘In this paper,we obtain suffcient conditions for the stability in p-th moment of the analytical solutions and the mean square stability of a stochastic differential equation with unbounded delay proposed in [6,10] using the explicit Euler method.
文摘In this paper,by constructing proper Lyapunov functions,exponential stability criteria for stochastic delay partial differential equations are obtained. An example is shown to illustrate the results.
文摘The key aim of this paper is to show the strong convergence of the truncated Euler-Maruyama method for neutral stochastic differential delay equations(NSDDEs)with Markovian switching(MS)without the linear growth condition.We present the truncated Euler-Maruyama method of NSDDEs-MS and consider its moment boundedness under the local Lipschitz condition plus Khasminskii-type condition.We also study its strong convergence rates at time T and over a finite interval[0,T].Some numerical examples are given to illustrate the theoretical results.
基金Project supported by the 973 National Basic Research Program of China (No. 2007CB814904)the National Natural Science Foundations of China (No. 10921101)+2 种基金the Shandong Provincial Natural Science Foundation of China (No. 2008BS01024)the Science Fund for Distinguished Young Scholars of Shandong Province (No. JQ200801)the Shandong University Science Fund for Distinguished Young Scholars(No. 2009JQ004)
文摘The authors discuss one type of general forward-backward stochastic differential equations (FBSDEs) with Ito's stochastic delayed equations as the forward equations and anticipated backward stochastic differential equations as the backward equations.The existence and uniqueness results of the general FBSDEs are obtained.In the framework of the general FBSDEs in this paper,the explicit form of the optimal control for linear-quadratic stochastic optimal control problem with delay and the Nash equilibrium point for nonzero sum differential games problem with delay are obtained.
基金Acknowledgements The authors would like to thank the referees for helpful suggestions which allowed them to improve the presentation of this paper. This work was supported in part by the National Natural Science Foundation of China (Grant No. 11271093) and the Science Research Project of Hubei Provincial Department Of Education (No. Q20141306).
文摘We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transformation argument, we establish the quadratic transportation inequalities for the law of the mild solution of those equations driven by fractional Brownian motion under the L2 metric and the uniform metric.
基金supported by the National Key R&D Program of China under Grant No.2022YFA1006103the National Natural Science Foundation of China under Grant Nos.61821004,61925306,11831010,71973084,61977043the National Science Foundation of Shandong Province under Grant Nos.ZR2019ZD42 and ZR2020ZD24。
文摘Motivated by a duopoly game problem,the authors study an optimal control problem where the system is driven by Brownian motion and Poisson point process and has elephant memory for the control variable and the state variable.Firstly,the authors establish the unique solvability of an anticipated backward stochastic differential equation,derive a stochastic maximum principle,and prove a verification theorem for the aforementioned optimal control problem.Furthermore,the authors generalize these results to nonzero-sum stochastic differential game problems.Finally,the authors apply the theoretical results to the duopoly game problem and obtain the corresponding Nash equilibrium solution.
基金supported by the Natural Science Foundation of China under Grant No.61573217,111 Project(B12023)the National High-Level Personnel of Special Support Programthe Chang Jiang Scholar Program of Chinese Education Ministry
文摘This paper is concerned with the optimal control problems of forward-backward delay systems involving impulse controls. The authors establish a stochastic maximum principle for this kind of systems. The most distinguishing features of the proposed problem are that the control variables consist of regular and impulsive controls, both with time delay, and that the domain of regular control is not necessarily convex. The authors obtain the necessary and sufficient conditions for optimal controls,which have potential applications in mathematical finance.
基金supported by Science Engineering Research Board(SERB),DST,GovtYSS Project F.No:YSS/2014/000447 dated 20.11.2015UGC,New Delhi,for providing BSR fellowship for the year 2015.
文摘This paper focuses on optimal control of nonlinear stochastic delay system constructed through Teugels martingales associated with Lévy processes and standard Brownian motion,in which finite horizon is extended to infinite horizon.In order to describe the interacting many-body system,the expectation values of state processes are added to the concerned system.Further,sufficient and necessary conditions are established under convexity assumptions of the control domain.Finally,an example is given to demonstrate the application of the theory.
基金This research was supported by the National Natural Science Foundation of China(No.71801186)the Science Foundation of Ministry of Education of China(No.18YJC630001)the Natural Science Foundation of Guangdong Province of China(No.2017A030310660).
文摘In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsurance to transfer part of the insurance claims risk.In addition to reinsurance,she also can invests her surplus in a financial market,which is consisted of a risk-free asset and a risky asset described by Heston’s stochastic volatility(SV)model.Considering the performance-related capital flow,the insurer’s wealth process is modeled by a stochastic differential delay equation.The insurer’s target is to find the optimal investment and proportional reinsurance strategy to maximize the expected exponential utility of combined terminal wealth.We explicitly derive the optimal strategy and the value function.Finally,we provide some numerical examples to illustrate our results.
基金Supported by the National Natural Science Foundation of China(71501050)Startup Foundation for Doctors of ZhaoQing University(611-612282)the National Science Foundation of Guangdong Province of China(2017A030310660)
文摘This paper considers a worst-case investment optimization problem with delay for a fund manager who is in a crash-threatened financial market. Driven by existing of capital inflow/outflow related to history performance, we investigate the optimal investment strategies under the worst-case scenario and the stochastic control framework with delay. The financial market is assumed to be either in a normal state(crash-free) or in a crash state. In the normal state the prices of risky assets behave as geometric Brownian motion, and in the crash state the prices of risky assets suddenly drop by a certain relative amount, which induces to a dropping of the total wealth relative to that of crash-free state. We obtain the ordinary differential equations satisfied by the optimal investment strategies and the optimal value functions under the power and exponential utilities, respectively. Finally, a numerical simulation is provided to illustrate the sensitivity of the optimal strategies with respective to the model parameters.