A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stoc...A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.展开更多
Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach fo...Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach for virtual testability demonstration test based on stochastic process theory is proposed.First,the similarities and differences of fault sample generation between physical testability demonstration test and virtual testability demonstration test are discussed.Second,it is pointed out that the fault occurrence process subject to perfect repair is renewal process.Third,the interarrival time distribution function of the next fault event is given.Steps and flowcharts of fault sample generation are introduced.The number of faults and their occurrence time are obtained by statistical simulation.Finally,experiments are carried out on a stable tracking platform.Because a variety of types of life distributions and maintenance modes are considered and some assumptions are removed,the sample size and structure of fault sample simulation results are more similar to the actual results and more reasonable.The proposed method can effectively guide the fault injection in virtual testability demonstration test.展开更多
This paper considers the problem of reliable control for continuous-time systems with interval time-varying delay. By introducing a random matrix, a new practical actuator fault model is established. Using the Lyapuno...This paper considers the problem of reliable control for continuous-time systems with interval time-varying delay. By introducing a random matrix, a new practical actuator fault model is established. Using the Lyapunov-Krasovskii approach, a sufficient condition for the existence of reliable controller is expressed by a linear matrix inequality(LMI). An illustrative example is exploited to show the effectiveness, of the proposed design procedures.展开更多
基金supported by the National Natural Science Foundation of China(61773387)the China Postdoctoral Fund(2016M5909712017T100770)。
文摘A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.
基金National Natural Science Foundation of China(51105369)
文摘Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach for virtual testability demonstration test based on stochastic process theory is proposed.First,the similarities and differences of fault sample generation between physical testability demonstration test and virtual testability demonstration test are discussed.Second,it is pointed out that the fault occurrence process subject to perfect repair is renewal process.Third,the interarrival time distribution function of the next fault event is given.Steps and flowcharts of fault sample generation are introduced.The number of faults and their occurrence time are obtained by statistical simulation.Finally,experiments are carried out on a stable tracking platform.Because a variety of types of life distributions and maintenance modes are considered and some assumptions are removed,the sample size and structure of fault sample simulation results are more similar to the actual results and more reasonable.The proposed method can effectively guide the fault injection in virtual testability demonstration test.
基金supported by the National Natural Science Foundation of China (No. 60904013, 60974029)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 10KJB510007)
文摘This paper considers the problem of reliable control for continuous-time systems with interval time-varying delay. By introducing a random matrix, a new practical actuator fault model is established. Using the Lyapunov-Krasovskii approach, a sufficient condition for the existence of reliable controller is expressed by a linear matrix inequality(LMI). An illustrative example is exploited to show the effectiveness, of the proposed design procedures.