期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
FEATURE EXTRACTION AND RECOGNITION FOR ECHOES OF HRR RADAR
1
作者 Xie Deguang Zhang Xianda 《Journal of Electronics(China)》 2009年第6期788-793,共6页
This paper describes a novel target recognition scheme using High Range Resolution (HRR) radar signatures. AutoRegressive (AR) method is used to extract features from HRR radar echoes based on scattering center model ... This paper describes a novel target recognition scheme using High Range Resolution (HRR) radar signatures. AutoRegressive (AR) method is used to extract features from HRR radar echoes based on scattering center model of target. The optimal linear transformation based on Euclidian distribution distance criterion is performed on AR model parameter vectors to reduce dimension of feature vectors further and improve the class discrimination capability of feature vectors. The optimization algorithm is designed utilizing the quadratic property of criterion function and Gaussian kernel based Parzen window density function estimator. The concept of Stochastic Information Gradient (SIG) is incorporated into the gradient of cost function to decrease the computational complexity of the algorithm. Simulation results using three real airplanes,data show the effectiveness of the proposed method. 展开更多
关键词 Radar target recognition Feature extraction AutoregRessive (AR) model Densityfunction estimation stochastic information Gradient (SIG)
下载PDF
Reliability-based congestion pricing model under endogenous equilibrated market penetration and compliance rate of ATIS
2
作者 钟绍鹏 邓卫 Bushell MAX 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1155-1165,共11页
A reliability-based stochastic system optimum congestion pricing(SSOCP) model with endogenous market penetration and compliance rate in an advanced traveler information systems(ATIS) environment was proposed. All trav... A reliability-based stochastic system optimum congestion pricing(SSOCP) model with endogenous market penetration and compliance rate in an advanced traveler information systems(ATIS) environment was proposed. All travelers were divided into two classes. The first guided travelers were referred to as the equipped travelers who follow ATIS advice, while the second unguided travelers were referred to as the unequipped travelers and the equipped travelers who do not follow the ATIS advice(also referred to as non-complied travelers). Travelers were assumed to take travel time, congestion pricing, and travel time reliability into account when making travel route choice decisions. In order to arrive at on time, travelers needed to allow for a safety margin to their trip.The market penetration of ATIS was determined by a continuous increasing function of the information benefit, and the ATIS compliance rate of equipped travelers was given as the probability of the actually experienced travel costs of guided travelers less than or equal to those of unguided travelers. The analysis results could enhance our understanding of the effect of travel demand level and travel time reliability confidence level on the ATIS market penetration and compliance rate; and the effect of travel time perception variation of guided and unguided travelers on the mean travel cost savings(MTCS) of the equipped travelers, the ATIS market penetration, compliance rate, and the total network effective travel time(TNETT). 展开更多
关键词 reliability advanced traveler information systems market penetration compliance rate stochastic system optimum congestion pricing non-additive path cost
下载PDF
On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization 被引量:1
3
作者 Andre Milzarek Xiantao Xiao +1 位作者 Zaiwen Wen Michael Ulbrich 《Science China Mathematics》 SCIE CSCD 2022年第10期2151-2170,共20页
In this work,we present probabilistic local convergence results for a stochastic semismooth Newton method for a class of stochastic composite optimization problems involving the sum of smooth nonconvex and nonsmooth c... In this work,we present probabilistic local convergence results for a stochastic semismooth Newton method for a class of stochastic composite optimization problems involving the sum of smooth nonconvex and nonsmooth convex terms in the objective function.We assume that the gradient and Hessian information of the smooth part of the objective function can only be approximated and accessed via calling stochastic firstand second-order oracles.The approach combines stochastic semismooth Newton steps,stochastic proximal gradient steps and a globalization strategy based on growth conditions.We present tail bounds and matrix concentration inequalities for the stochastic oracles that can be utilized to control the approximation errors via appropriately adjusting or increasing the sampling rates.Under standard local assumptions,we prove that the proposed algorithm locally turns into a pure stochastic semismooth Newton method and converges r-linearly or r-superlinearly with high probability. 展开更多
关键词 nonsmooth stochastic optimization stochastic approximation semismooth Newton method stochastic second-order information local convergence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部