期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles
1
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《Journal of Automation and Intelligence》 2024年第1期2-18,共17页
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus... This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles. 展开更多
关键词 Active suspension system Electric vehicles In-wheel motor stochastic sampling Dynamic dampers Sampled-data control multi-objective control
下载PDF
Deep Neural Network Architecture Search via Decomposition-Based Multi-Objective Stochastic Fractal Search
2
作者 Hongshang Xu Bei Dong +1 位作者 Xiaochang Liu Xiaojun Wu 《Intelligent Automation & Soft Computing》 2023年第11期185-202,共18页
Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puti... Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puting resources.Moreover,when the task changes,the original network architecture becomes outdated and requires redesigning.Thus,Neural Architecture Search(NAS)has gained attention as an effective approach to automatically generate optimal network architectures.Most NAS methods mainly focus on achieving high performance while ignoring architectural complexity.A myriad of research has revealed that network performance and structural complexity are often positively correlated.Nevertheless,complex network structures will bring enormous computing resources.To cope with this,we formulate the neural architecture search task as a multi-objective optimization problem,where an optimal architecture is learned by minimizing the classification error rate and the number of network parameters simultaneously.And then a decomposition-based multi-objective stochastic fractal search method is proposed to solve it.In view of the discrete property of the NAS problem,we discretize the stochastic fractal search step size so that the network architecture can be optimized more effectively.Additionally,two distinct update methods are employed in step size update stage to enhance the global and local search abilities adaptively.Furthermore,an information exchange mechanism between architectures is raised to accelerate the convergence process and improve the efficiency of the algorithm.Experimental studies show that the proposed algorithm has competitive performance comparable to many existing manual and automatic deep neural network generation approaches,which achieved a parameter-less and high-precision architecture with low-cost on each of the six benchmark datasets. 展开更多
关键词 Deep neural network neural architecture search multi-objective optimization stochastic fractal search DECOMPOSITION
下载PDF
PSO Based Multi-Objective Approach for Controlling PID Controller 被引量:2
3
作者 Harsh Goud Prakash Chandra Sharma +6 位作者 Kashif Nisar Ag.Asri Ag.Ibrahim Muhammad Reazul Haque Narendra Singh Yadav Pankaj Swarnkar Manoj Gupta Laxmi Chand 《Computers, Materials & Continua》 SCIE EI 2022年第6期4409-4423,共15页
CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities... CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities in its control and design.Dynamic performance is compassionate to change in system parameterswhich need more effort for planning a significant controller for CSTR.The reactor temperature changes in either direction from the defined reference value.It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature,and deviation from reference values may cause degradation of biomass quality.Design and implementation of an appropriate adaptive controller for such a nonlinear system are essential.In this paper,a conventional Proportional Integral Derivative(PID)controller is designed.The conventional techniques to deal with constraints suffer severe limitations like it has fixed controller parameters.Hence,A novel method is applied for computing the PID controller parameters using a swarm algorithm that overcomes the conventional controller’s limitation.In the proposed technique,PID parameters are tuned by Particle Swarm Optimization(PSO).It is not easy to choose the suitable objective function to design a PID controller using PSO to get an optimal response.In this article,a multi-objective function is proposed for PSO based controller design of CSTR. 展开更多
关键词 Particle swarm optimization multi-objective pso continuous stirred tank reactor proportional integral derivative controller
下载PDF
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
4
作者 杜文莉 王珊珊 +1 位作者 陈旭 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期184-189,共6页
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 展开更多
关键词 dynamic multi-objective optimization bare-bones particle swarm optimization(pso) algorithm chemical process
下载PDF
Distribution Network Expansion Planning Based on Multi-objective PSO Algorithm
5
作者 Chunyu Zhang Yi Ding +2 位作者 Qiuwei Wu Qi Wang Jacob Φstergaard 《Energy and Power Engineering》 2013年第4期975-979,共5页
This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, ener... This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system. 展开更多
关键词 Distribution Network Expansion Planning TWO-PHASE multi-objective pso
下载PDF
Weak thruster fault detection for AUV based on stochastic resonance and wavelet reconstruction 被引量:5
6
作者 刘维新 王玉甲 +1 位作者 刘星 张铭钧 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2883-2895,共13页
When the bi-stable stochastic resonance method was applied to enhance weak thruster fault for autonomous underwater vehicle(AUV), the enhancement performance could not satisfy the detection requirement of weak thruste... When the bi-stable stochastic resonance method was applied to enhance weak thruster fault for autonomous underwater vehicle(AUV), the enhancement performance could not satisfy the detection requirement of weak thruster fault. As for this problem, a fault feature enhancement method based on mono-stable stochastic resonance was proposed. In the method, in order to improve the enhancement performance of weak thruster fault feature, the conventional bi-stable potential function was changed to mono-stable potential function which was more suitable for aperiodic signals. Furthermore, when particle swarm optimization was adopted to adjust the parameters of mono-stable stochastic resonance system, the global convergent time would be long. An improved particle swarm optimization method was developed by changing the linear inertial weighted function as nonlinear function with cosine function, so as to reduce the global convergent time. In addition, when the conventional wavelet reconstruction method was adopted to detect the weak thruster fault, undetected fault or false alarm may occur. In order to successfully detect the weak thruster fault, a weak thruster detection method was proposed based on the integration of stochastic resonance and wavelet reconstruction. In the method, the optimal reconstruction scale was determined by comparing wavelet entropies corresponding to each decomposition scale. Finally, pool-experiments were performed on AUV with thruster fault. The effectiveness of the proposed mono-stable stochastic resonance method in enhancing fault feature and reducing the global convergent time was demonstrated in comparison with particle swarm optimization based bi-stochastic resonance method. Furthermore, the effectiveness of the proposed fault detection method was illustrated in comparison with the conventional wavelet reconstruction. 展开更多
关键词 autonomous underwater vehicle(AUV) THRUSTER weak fault particle swarm optimization(pso) mono-stable stochastic resonance wavelet reconstruction
下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
7
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm OPTIMIZATION particle SWARM OPTIMIZATION (pso) CLOUD computing system
下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
8
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(pso) multi-objective optimization flexible flowshop scheduling smart home appliances
下载PDF
Scheduling an Energy-Aware Parallel Machine System with Deteriorating and Learning Effects Considering Multiple Optimization Objectives and Stochastic Processing Time
9
作者 Lei Wang Yuxin Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期325-339,共15页
Currently,energy conservation draws wide attention in industrial manufacturing systems.In recent years,many studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as... Currently,energy conservation draws wide attention in industrial manufacturing systems.In recent years,many studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as an effective approach.This paper puts forwards a multi-objective stochastic parallel machine scheduling problem with the consideration of deteriorating and learning effects.In it,the real processing time of jobs is calculated by using their processing speed and normal processing time.To describe this problem in a mathematical way,amultiobjective stochastic programming model aiming at realizing makespan and energy consumption minimization is formulated.Furthermore,we develop a multi-objective multi-verse optimization combined with a stochastic simulation method to deal with it.In this approach,the multi-verse optimization is adopted to find favorable solutions from the huge solution domain,while the stochastic simulation method is employed to assess them.By conducting comparison experiments on test problems,it can be verified that the developed approach has better performance in coping with the considered problem,compared to two classic multi-objective evolutionary algorithms. 展开更多
关键词 Energy consumption optimization parallel machine scheduling multi-objective optimization deteriorating and learning effects stochastic simulation
下载PDF
AMTS:Adaptive Multi-Objective Task Scheduling Strategy in Cloud Computing
10
作者 HE Hua XU Guangquan +1 位作者 PANG Shanchen ZHAO Zenghua 《China Communications》 SCIE CSCD 2016年第4期162-171,共10页
Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consump... Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consumption and Quality of Service(QoS) requirements under the changing environment and diverse tasks. Considering both processing time and transmission time, a PSO-based Adaptive Multi-objective Task Scheduling(AMTS) Strategy is proposed in this paper. First, the task scheduling problem is formulated. Then, a task scheduling policy is advanced to get the optimal resource utilization, task completion time, average cost and average energy consumption. In order to maintain the particle diversity, the adaptive acceleration coefficient is adopted. Experimental results show that the improved PSO algorithm can obtain quasi-optimal solutions for the cloud task scheduling problem. 展开更多
关键词 quality of service cloud computing multi-objective task scheduling particle swarm optimization(pso) small position value(SPV)
下载PDF
基于随机过程的PSO收敛性分析 被引量:38
11
作者 金欣磊 马龙华 +1 位作者 吴铁军 钱积新 《自动化学报》 EI CSCD 北大核心 2007年第12期1263-1268,共6页
分析了粒子群优化算法(PS0)的全局收敛性.在已有文献的假设前提下和随机系统理论基础上,对PSO进行算法分析推导,给出了其动力学系统依均方收敛的一个充分条件,从而有效地避免了已有文献基于线性时变离散系统研究PSO收敛性的不足.通过对... 分析了粒子群优化算法(PS0)的全局收敛性.在已有文献的假设前提下和随机系统理论基础上,对PSO进行算法分析推导,给出了其动力学系统依均方收敛的一个充分条件,从而有效地避免了已有文献基于线性时变离散系统研究PSO收敛性的不足.通过对所得的粒子运行轨迹图和已有文献相比较,得到了更好的结果和判据.通过仿真实验分析研究,验证了该结论的有效性. 展开更多
关键词 随机过程 粒子群优化 均方稳定 收敛性
下载PDF
基于随机模拟与PSO算法相结合的随机机会约束规划算法 被引量:7
12
作者 肖宁 曾建潮 《计算机应用与软件》 CSCD 2009年第4期40-41,58,共3页
随机机会约束规划作为一类重要的随机规划,广泛存在于许多领域中。为了寻找更有效的求解随机机会约束规划的算法,通过采用随机模拟来逼近随机函数,并在微粒群算法PSO(Particle Swarm Optimization)中利用随机模拟实现估计适应值和检验... 随机机会约束规划作为一类重要的随机规划,广泛存在于许多领域中。为了寻找更有效的求解随机机会约束规划的算法,通过采用随机模拟来逼近随机函数,并在微粒群算法PSO(Particle Swarm Optimization)中利用随机模拟实现估计适应值和检验解的可行性,从而给出了求解随机机会约束规划的新算法,最后,测试其性能并与遗传算法进行了比较,实例结果表明该算法的正确性和有效性。 展开更多
关键词 随机规划 随机机会约束规划 微粒群算法 随机模拟
下载PDF
用于测试用例最小化问题的改进PSO算法 被引量:6
13
作者 孙家泽 王曙燕 曹小鹏 《计算机工程》 CAS CSCD 北大核心 2009年第15期201-202,205,共3页
针对回归测试中测试用例最小化问题,将粒子群优化算法和随机算法相结合,提出一种二维随机粒子群优化算法,用来解决测试用例最小化的问题。该算法采用二维适应值评价函数,一维是覆盖度,另一维是冗余度。利用各个测试用例的覆盖率为概率... 针对回归测试中测试用例最小化问题,将粒子群优化算法和随机算法相结合,提出一种二维随机粒子群优化算法,用来解决测试用例最小化的问题。该算法采用二维适应值评价函数,一维是覆盖度,另一维是冗余度。利用各个测试用例的覆盖率为概率随机产生下一代个体位置。实验结果表明该算法性能优良且具有较好的稳定性。 展开更多
关键词 回归测试 测试用例最小化 粒子群优化算法 随机算法
下载PDF
具有随机惯性权重的PSO算法 被引量:37
14
作者 胡建秀 曾建潮 《计算机仿真》 CSCD 2006年第8期164-167,共4页
微粒群算法(PSO算法)是模拟鸟类、鱼群等的群体智能行为的一种优化算法,当前,在相关领域内,倍受国内外学者关注。该文在分析基本PSO算法的速度进化方程的基础上,提出一种能更好描述微粒进化过程的速度方程,由其引出一种具有随机惯性权重... 微粒群算法(PSO算法)是模拟鸟类、鱼群等的群体智能行为的一种优化算法,当前,在相关领域内,倍受国内外学者关注。该文在分析基本PSO算法的速度进化方程的基础上,提出一种能更好描述微粒进化过程的速度方程,由其引出一种具有随机惯性权重的PSO算法;通过五个典型测试函数的仿真实验,验证了其可行性,同时也表明具有随机惯性权重的PSO算法较具有线性递减惯性权重的PSO算法在收敛速度和全局收敛性方面有明显提高。 展开更多
关键词 微粒群算法 惯性权重 随机惯性权重
下载PDF
具有自适应随机惯性权重的PSO算法 被引量:13
15
作者 延丽平 曾建潮 《计算机工程与设计》 CSCD 北大核心 2006年第24期4677-4679,4706,共4页
通过对标准PSO算法中惯性权重和全局最好值的分析,提出了一种根据全局最好值的变化而自适应变化的随机惯性权重的方法。通过对5个典型的Benchmark函数的测试,结果表明此方法在收敛速度和全局收敛性方面都较线性递减的惯性权重的方法有... 通过对标准PSO算法中惯性权重和全局最好值的分析,提出了一种根据全局最好值的变化而自适应变化的随机惯性权重的方法。通过对5个典型的Benchmark函数的测试,结果表明此方法在收敛速度和全局收敛性方面都较线性递减的惯性权重的方法有所改进。最后,将改进的PSO算法应用于分类问题,与标准PSO算法与C4.5的结果相比,分类精度和速度都有所提高。 展开更多
关键词 pso算法 惯性权重 全局最好值 自适应随机惯性权重 分类
下载PDF
基于SIWPSO的单轴对称圆孔蜂窝梁优化设计 被引量:1
16
作者 陈向荣 陈星 王鑫伟 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期716-721,共6页
利用具有随机惯性权重的粒子群算法(SIWPSO),在数学软件MATLAB中编写优化程序,将蜂窝梁的受力情况和边界条件详细地编入优化程序,以期得到蜂窝梁在任一工况下最优参数的精确解,经大量程序调试发现该程序输出结果稳定.通过ABAQUS建模进... 利用具有随机惯性权重的粒子群算法(SIWPSO),在数学软件MATLAB中编写优化程序,将蜂窝梁的受力情况和边界条件详细地编入优化程序,以期得到蜂窝梁在任一工况下最优参数的精确解,经大量程序调试发现该程序输出结果稳定.通过ABAQUS建模进行有限元分析,发现所得单轴对称圆孔蜂窝梁的力学性能优良.研究表明:SIWPSO算法具有较快的收敛性和较高的精度,可以缩减设计时间并满足设计要求;此算法所得蜂窝梁能以较少的材料抵抗外部作用力,具有较高的经济性;此算法对蜂窝梁的优化设计有较高的适应度. 展开更多
关键词 蜂窝梁 单轴对称 优化设计 粒子群算法 随机惯性权重
下载PDF
基于PSO求解随机相关机会规划的有效算法 被引量:1
17
作者 肖宁 《计算机与数字工程》 2009年第6期52-56,共5页
随机相关机会规划是一类有着广泛应用背景的随机规划问题,通过采用随机仿真产生样本训练BP网络以逼近机会函数,然后应用微粒群算法并以逼近机会函数的神经网络作为适应值估计,从而提出了一种求解随机相关机会规划的混合智能算法。最后... 随机相关机会规划是一类有着广泛应用背景的随机规划问题,通过采用随机仿真产生样本训练BP网络以逼近机会函数,然后应用微粒群算法并以逼近机会函数的神经网络作为适应值估计,从而提出了一种求解随机相关机会规划的混合智能算法。最后通过实例仿真说明了算法的正确性和有效性。 展开更多
关键词 随机相关机会规划 微粒群算法 神经网络 随机仿真
下载PDF
基于改进PSO算法的随机投入产出模型
18
作者 王峰 李树荣 《计算机工程》 CAS CSCD 北大核心 2011年第9期29-31,37,共4页
建立一种基于改进PSO算法的随机投入产出模型,在随机变量分别服从正态分布和指数分布时比较其优化结果,利用改进粒子群算法和标准粒子群算法对模型进行实例求解。仿真实验结果表明,考虑随机变量服从指数分布更符合实际经济运行状况,且... 建立一种基于改进PSO算法的随机投入产出模型,在随机变量分别服从正态分布和指数分布时比较其优化结果,利用改进粒子群算法和标准粒子群算法对模型进行实例求解。仿真实验结果表明,考虑随机变量服从指数分布更符合实际经济运行状况,且计算得到的各行业产出大于随机变量服从正态分布时的情况。 展开更多
关键词 投入产出 正态分布 指数分布 改进pso算法 随机变量
下载PDF
随机权重复合模型PSO算法
19
作者 刘瑛 王福杰 潘宏侠 《天津工程师范学院学报》 2007年第3期22-25,共4页
在分析了标准微粒群(PSO)算法速度运动方程的基础上,提出了一种具有随机权重的复合模型PSO算法,采用测试函数进行仿真。实验结果表明,该算法能有效地提高收敛速度和全局搜索能力。
关键词 pso算法 随机惯性权重 复合模型
下载PDF
基于SPSO的考虑指控节点受攻击的WTA问题优化方法
20
作者 刘海啸 牟亮 +2 位作者 张维明 黄金才 乔士东 《火力与指挥控制》 CSCD 北大核心 2011年第8期36-39,共4页
鉴于网络中心战中指挥所的重要性,根据实际作战原则,通过对传统武器目标分配(WTA)模型的分析,建立了考虑指控节点受攻击的武器目标分配(Weapon-Target Assignment with Vulnerable Command and Control Nodes,WTAVC2N)模型,并利用随机PS... 鉴于网络中心战中指挥所的重要性,根据实际作战原则,通过对传统武器目标分配(WTA)模型的分析,建立了考虑指控节点受攻击的武器目标分配(Weapon-Target Assignment with Vulnerable Command and Control Nodes,WTAVC2N)模型,并利用随机PSO算法对该模型进行仿真验证。仿真结果表明了利用随机PSO算法解决考虑指挥所被摧毁的武器目标分配问题的有效性及合理性。 展开更多
关键词 网络中心战 指挥所 武器目标分配 随机pso算法
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部