Optical microscopy promises researchers to soe most tiny substances directly.However,the resolution of conventional microscopy is resticted by the diffraction limit.This makes it a challenge to observe subcellular pro...Optical microscopy promises researchers to soe most tiny substances directly.However,the resolution of conventional microscopy is resticted by the diffraction limit.This makes it a challenge to observe subcellular processes happened in nanoscale.The development of super-resolution microscopy provides a solution to this challenge.Here,we briefly review several commonly used super-resolution techniques,explicating their basic principles and applications in biological science,especially in neuroscience.In addition,characteristics and limitations of each techrique are compared to provide a guidance for biologists to choose the most suitable tool.展开更多
基金support from National Basic Research Program of China (973 Program) (2015CB352005)National Natural Science Foundation of China (No.6142780065,31571110,81527901)+1 种基金Natural Science Foundation of Zhejiang Province of China (No.Y16F050002)the Fundamental Research Funds for the Central Universities.
文摘Optical microscopy promises researchers to soe most tiny substances directly.However,the resolution of conventional microscopy is resticted by the diffraction limit.This makes it a challenge to observe subcellular processes happened in nanoscale.The development of super-resolution microscopy provides a solution to this challenge.Here,we briefly review several commonly used super-resolution techniques,explicating their basic principles and applications in biological science,especially in neuroscience.In addition,characteristics and limitations of each techrique are compared to provide a guidance for biologists to choose the most suitable tool.