This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-K...This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.展开更多
We study the stochastic evolutionary public goods game with punishment in a finite size population. Two kinds of costly punishments are considered, i.e., first-order punishment in which only the defectors are punished...We study the stochastic evolutionary public goods game with punishment in a finite size population. Two kinds of costly punishments are considered, i.e., first-order punishment in which only the defectors are punished, and second-order punishment in which both the defectors and the cooperators who do not punish the defective behaviors are punished. We focus on the stochastic stable equilibrium of the system. In the population, the evolutionary process of strategies is described as a finite state Markov process. The evolutionary equilibrium of the system and its stochastic stability are analyzed by the limit distribution of the Markov process. By numerical experiments, our findings are as follows.(i) The first-order costly punishment can change the evolutionary dynamics and equilibrium of the public goods game, and it can promote cooperation only when both the intensity of punishment and the return on investment parameters are large enough.(ii)Under the first-order punishment, the further imposition of the second-order punishment cannot change the evolutionary dynamics of the system dramatically, but can only change the probability of the system to select the equilibrium points in the "C+P" states, which refer to the co-existence states of cooperation and punishment. The second-order punishment has limited roles in promoting cooperation, except for some critical combinations of parameters.(iii) When the system chooses"C+P" states with probability one, the increase of the punishment probability under second-order punishment will further increase the proportion of the "P" strategy in the "C+P" states.展开更多
We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discuss...We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discussed in the singular case (a0, θ0) = (0, 0). If a0 = 0, then the mean-reverting α-stable motion becomes Ornstein-Uhlenbeck process and is studied in [7] in the ergodic case θ0 〉 0. For the Ornstein-Uhlenbeck process, asymptotics of the least squares estimators for the singular case (θ0 = 0) and for ergodic case (θ0 〉 0) are completely different.展开更多
The paper establishes two stochastic SIRS models with jumps to describe the spread of network virus by cyber war, terrorism and others. First, adding random perturbations proportionally to each variable, we get the dy...The paper establishes two stochastic SIRS models with jumps to describe the spread of network virus by cyber war, terrorism and others. First, adding random perturbations proportionally to each variable, we get the dynamic properties around the positive equilibrium of the deterministic model and the conditions for persistence and extinction. Second, giving a random disturbance to endemic equilibrium, we get a stochastic system with jumps. By modifying the existing Lyapunov function, we prove the positive solution of the system is stochastically stable.展开更多
A robust dissipative control problem for a class of It-type stochastic systems is discussed with Markovian jumping parameters and time-varying delay. A memoryless state feedback dissipative controller is developed bas...A robust dissipative control problem for a class of It-type stochastic systems is discussed with Markovian jumping parameters and time-varying delay. A memoryless state feedback dissipative controller is developed based on Lyapunov-Krasovskii functional approach such that the closed-loop system is robustly stochastically stable and weakly delay-dependent (RSSWDD) and strictly (Q, S, R)-dissipative. The sufficient condition on the existence of state feedback dissipative controller is presented by linear matrix inequality (LMI). And the desired controller can be concluded as solving a set of LMI. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.展开更多
Stochastic switched epidemic systems with a discrete or distributed time delay are constructed and investigated. By the Lyapunov method and lto's differential rule, the existence and uniqueness of global positive sol...Stochastic switched epidemic systems with a discrete or distributed time delay are constructed and investigated. By the Lyapunov method and lto's differential rule, the existence and uniqueness of global positive solution of each system is proved. And stability conditions of the disease-free equilibrium of the systems are obtained. Numerical simulations are presented to illustrate the results.展开更多
The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlineariti...The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.展开更多
This article develops a model to examine the equilibrium behavior of the time inconsistency problem in a continuous time economy with stochastic and endogenized distortion. First, the authors introduce the notion of s...This article develops a model to examine the equilibrium behavior of the time inconsistency problem in a continuous time economy with stochastic and endogenized distortion. First, the authors introduce the notion of sequentially rational equilibrium, and show that the time inconsistency problem may be solved with trigger reputation strategies for stochastic setting. The conditions for the existence of sequentially rational equilibrium are provided. Then, the concept of sequentially rational stochastically stable equilibrium is introduced. The authors compare the relative stability between the cooperative behavior and uncooperative behavior, and show that the cooperative equilibrium in this monetary policy game is a sequentially rational stochastically stable equilibrium and the uncooperative equilibrium is sequentially rational stochastically unstable equilibrium. In the long run, the zero inflation monetary policies are inherently more stable than the discretion rules, and once established, they tend to persist for longer periods of the time.展开更多
In this paper, we discuss the behavior of a predator-prey model with disease in the prey with and without stochastic perturbation, respectively. First, we briefly give the dynamic of the deterministic system, by analy...In this paper, we discuss the behavior of a predator-prey model with disease in the prey with and without stochastic perturbation, respectively. First, we briefly give the dynamic of the deterministic system, by analyzing stabilities of its four equilibria. Then, we consider the asymptotic behavior of the stochastic system. By Lyapunov analysis methods, we show the stochastic stability and its long time behavior around the equi- librium of the deterministic system. We obtain there are similar properties between the stochastic system and its corresponding deterministic system, when white noise is small. But large white noise can make a unstable deterministic system to be stable.展开更多
文摘This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.
基金supported by the National Natural Science Foundation of China(Grant Nos.71501149 and 71231007)the Soft Science Project of Hubei Province,China(Grant No.2017ADC122)the Fundamental Research Funds for the Central Universities,China(Grant No.WUT:2017VI070)
文摘We study the stochastic evolutionary public goods game with punishment in a finite size population. Two kinds of costly punishments are considered, i.e., first-order punishment in which only the defectors are punished, and second-order punishment in which both the defectors and the cooperators who do not punish the defective behaviors are punished. We focus on the stochastic stable equilibrium of the system. In the population, the evolutionary process of strategies is described as a finite state Markov process. The evolutionary equilibrium of the system and its stochastic stability are analyzed by the limit distribution of the Markov process. By numerical experiments, our findings are as follows.(i) The first-order costly punishment can change the evolutionary dynamics and equilibrium of the public goods game, and it can promote cooperation only when both the intensity of punishment and the return on investment parameters are large enough.(ii)Under the first-order punishment, the further imposition of the second-order punishment cannot change the evolutionary dynamics of the system dramatically, but can only change the probability of the system to select the equilibrium points in the "C+P" states, which refer to the co-existence states of cooperation and punishment. The second-order punishment has limited roles in promoting cooperation, except for some critical combinations of parameters.(iii) When the system chooses"C+P" states with probability one, the increase of the punishment probability under second-order punishment will further increase the proportion of the "P" strategy in the "C+P" states.
基金Hu is supported by the National Science Foundation under Grant No.DMS0504783Long is supported by FAU Start-up funding at the C. E. Schmidt College of Science
文摘We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discussed in the singular case (a0, θ0) = (0, 0). If a0 = 0, then the mean-reverting α-stable motion becomes Ornstein-Uhlenbeck process and is studied in [7] in the ergodic case θ0 〉 0. For the Ornstein-Uhlenbeck process, asymptotics of the least squares estimators for the singular case (θ0 = 0) and for ergodic case (θ0 〉 0) are completely different.
基金partially supported by the Natural Science Foundation of Heilongjiang Province(A201420)Educational Reform Project of Heilongjiang Province(JG2013010482)+1 种基金Foundation of Heilongjiang Province Educational Committee(12541696)the Natural Science Foundation of China(11401136,11301112,11301207,11501148)
文摘The paper establishes two stochastic SIRS models with jumps to describe the spread of network virus by cyber war, terrorism and others. First, adding random perturbations proportionally to each variable, we get the dynamic properties around the positive equilibrium of the deterministic model and the conditions for persistence and extinction. Second, giving a random disturbance to endemic equilibrium, we get a stochastic system with jumps. By modifying the existing Lyapunov function, we prove the positive solution of the system is stochastically stable.
基金supported in part by the National Natural Science Foundation of China (60874045 60904030)+1 种基金the Foundation of the Education Bureau of Jiangsu Province (09KJB510019)the Natural Science Foundation of Jiangsu Province (BK2009184)
文摘A robust dissipative control problem for a class of It-type stochastic systems is discussed with Markovian jumping parameters and time-varying delay. A memoryless state feedback dissipative controller is developed based on Lyapunov-Krasovskii functional approach such that the closed-loop system is robustly stochastically stable and weakly delay-dependent (RSSWDD) and strictly (Q, S, R)-dissipative. The sufficient condition on the existence of state feedback dissipative controller is presented by linear matrix inequality (LMI). And the desired controller can be concluded as solving a set of LMI. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(60874114)
文摘Stochastic switched epidemic systems with a discrete or distributed time delay are constructed and investigated. By the Lyapunov method and lto's differential rule, the existence and uniqueness of global positive solution of each system is proved. And stability conditions of the disease-free equilibrium of the systems are obtained. Numerical simulations are presented to illustrate the results.
基金supported partly by the National Natural Science Foundation of China(60574001)the Program for New Century Excellent Talents in University(050485)the Program for Innovative Research Team of Jiangnan University.
文摘The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.
基金the National Natural Science Foundation of China (70602012),Texas Advanced Research Program as well as from the Bush Program in the Economics of Public Policy,the Private Enterprise Research Center, and the Lewis Faculty Fellowship at Texas A & M University
文摘This article develops a model to examine the equilibrium behavior of the time inconsistency problem in a continuous time economy with stochastic and endogenized distortion. First, the authors introduce the notion of sequentially rational equilibrium, and show that the time inconsistency problem may be solved with trigger reputation strategies for stochastic setting. The conditions for the existence of sequentially rational equilibrium are provided. Then, the concept of sequentially rational stochastically stable equilibrium is introduced. The authors compare the relative stability between the cooperative behavior and uncooperative behavior, and show that the cooperative equilibrium in this monetary policy game is a sequentially rational stochastically stable equilibrium and the uncooperative equilibrium is sequentially rational stochastically unstable equilibrium. In the long run, the zero inflation monetary policies are inherently more stable than the discretion rules, and once established, they tend to persist for longer periods of the time.
文摘In this paper, we discuss the behavior of a predator-prey model with disease in the prey with and without stochastic perturbation, respectively. First, we briefly give the dynamic of the deterministic system, by analyzing stabilities of its four equilibria. Then, we consider the asymptotic behavior of the stochastic system. By Lyapunov analysis methods, we show the stochastic stability and its long time behavior around the equi- librium of the deterministic system. We obtain there are similar properties between the stochastic system and its corresponding deterministic system, when white noise is small. But large white noise can make a unstable deterministic system to be stable.