Stochastic vehicle routing problems ( VRPs) play important roles in logistics, though they have not been studied systematically yet. The paper summaries the definition, properties and classification of stochastic VRPs...Stochastic vehicle routing problems ( VRPs) play important roles in logistics, though they have not been studied systematically yet. The paper summaries the definition, properties and classification of stochastic VRPs, makes further discussion about two strategies in stochastic VRPs, and at last overviews dynamic and stochastic VRPs.展开更多
This paper describes a route planner that enables an autonomous underwater vehicle to selectively complete part of the predetermined tasks in the operating ocean area when the local path cost is stochastic.The problem...This paper describes a route planner that enables an autonomous underwater vehicle to selectively complete part of the predetermined tasks in the operating ocean area when the local path cost is stochastic.The problem is formulated as a variant of the orienteering problem.Based on the genetic algorithm(GA),we propose the greedy strategy based GA(GGA)which includes a novel rebirth operator that maps infeasible individuals into the feasible solution space during evolution to improve the efficiency of the optimization,and use a differential evolution planner for providing the deterministic local path cost.The uncertainty of the local path cost comes from unpredictable obstacles,measurement error,and trajectory tracking error.To improve the robustness of the planner in an uncertain environment,a sampling strategy for path evaluation is designed,and the cost of a certain route is obtained by multiple sampling from the probability density functions of local paths.Monte Carlo simulations are used to verify the superiority and effectiveness of the planner.The promising simulation results show that the proposed GGA outperforms its counterparts by 4.7%–24.6%in terms of total profit,and the sampling-based GGA route planner(S-GGARP)improves the average profit by 5.5%compared to the GGA route planner(GGARP).展开更多
In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem wi...In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem with stochastic demands(SDVRPSD)model and the multi-depot split delivery heterogeneous vehicle routing problem with stochastic demands(MDSDHVRPSD)model are established.A two-stage hybrid variable neighborhood tabu search algorithm is designed for unmanned vehicle task planning to minimize the path cost of rescue plans.Simulation experiments show that the solution obtained by the algorithm can effectively reduce the rescue vehicle path cost and the rescue task completion time,with high optimization quality and certain portability.展开更多
基金Supported by the National Natural Science Fundation of China( No. 70071028 and 79700019).
文摘Stochastic vehicle routing problems ( VRPs) play important roles in logistics, though they have not been studied systematically yet. The paper summaries the definition, properties and classification of stochastic VRPs, makes further discussion about two strategies in stochastic VRPs, and at last overviews dynamic and stochastic VRPs.
基金supported by the National Natural Science Foundation of China and Zhejiang Joint Fund for the Integration of Industrialization and Informatization(Nos.U1809212 and U1909206)the Fundamental Research Funds for the Zhejiang Provincial Universities(No.2021XZZX014)the National Natural Science Foundation of China(No.62088102)。
文摘This paper describes a route planner that enables an autonomous underwater vehicle to selectively complete part of the predetermined tasks in the operating ocean area when the local path cost is stochastic.The problem is formulated as a variant of the orienteering problem.Based on the genetic algorithm(GA),we propose the greedy strategy based GA(GGA)which includes a novel rebirth operator that maps infeasible individuals into the feasible solution space during evolution to improve the efficiency of the optimization,and use a differential evolution planner for providing the deterministic local path cost.The uncertainty of the local path cost comes from unpredictable obstacles,measurement error,and trajectory tracking error.To improve the robustness of the planner in an uncertain environment,a sampling strategy for path evaluation is designed,and the cost of a certain route is obtained by multiple sampling from the probability density functions of local paths.Monte Carlo simulations are used to verify the superiority and effectiveness of the planner.The promising simulation results show that the proposed GGA outperforms its counterparts by 4.7%–24.6%in terms of total profit,and the sampling-based GGA route planner(S-GGARP)improves the average profit by 5.5%compared to the GGA route planner(GGARP).
基金supported by the National Natural Science Foundation of China(No.61903036)。
文摘In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem with stochastic demands(SDVRPSD)model and the multi-depot split delivery heterogeneous vehicle routing problem with stochastic demands(MDSDHVRPSD)model are established.A two-stage hybrid variable neighborhood tabu search algorithm is designed for unmanned vehicle task planning to minimize the path cost of rescue plans.Simulation experiments show that the solution obtained by the algorithm can effectively reduce the rescue vehicle path cost and the rescue task completion time,with high optimization quality and certain portability.