期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
General election effect on the network topology of Pakistan’s stock market: network-based study of a political event 被引量:2
1
作者 Bilal Ahmed Memon Hongxing Yao Rabia Tahir 《Financial Innovation》 2020年第1期42-55,共14页
To examine the interdependency and evolution of Pakistan’s stock market,we consider the cross-correlation coefficients of daily stock returns belonging to the blue chip Karachi stock exchange(KSE-100)index.Using the ... To examine the interdependency and evolution of Pakistan’s stock market,we consider the cross-correlation coefficients of daily stock returns belonging to the blue chip Karachi stock exchange(KSE-100)index.Using the minimum spanning tree network-based method,we extend the financial network literature by examining the topological properties of the network and generating six minimum spanning tree networks around three general elections in Pakistan.Our results reveal a star-like structure after the general elections of 2018 and before those in 2008,and a tree-like structure otherwise.We also highlight key nodes,the presence of different clusters,and compare the differences between the three elections.Additionally,the sectorial centrality measures reveal economic expansion in three industrial sectors—cement,oil and gas,and fertilizers.Moreover,a strong overall intermediary role of the fertilizer sector is observed.The results indicate a structural change in the stock market network due to general elections.Consequently,through this analysis,policy makers can focus on monitoring key nodes around general elections to estimate stock market stability,while local and international investors can form optimal diversification strategies. 展开更多
关键词 Minimum spanning tree Centrality measures General elections Emerging market Pakistan stock market network
下载PDF
Prediction of the Bombay Stock Exchange (BSE) Market Returns Using Artificial Neural Network and Genetic Algorithm
2
作者 Yusuf Perwej Asif Perwej 《Journal of Intelligent Learning Systems and Applications》 2012年第2期108-119,共12页
Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing ca... Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency. 展开更多
关键词 stock market Genetic Algorithm Bombay stock Exchange (BSE) Artificial Neural network (ANN) PREDICTION Forecasting Data AUTOREGRESSIVE (AR)
下载PDF
Hot Events Detection of Stock Market Based on Time Series Data of Stock and Text Data of Network Public Opinion
3
作者 Beibei Cao 《Journal of Data Analysis and Information Processing》 2019年第4期174-189,共16页
With the highly integration of the Internet world and the real world, Internet information not only provides real-time and effective data for financial investors, but also helps them understand market dynamics, and en... With the highly integration of the Internet world and the real world, Internet information not only provides real-time and effective data for financial investors, but also helps them understand market dynamics, and enables investors to quickly identify relevant financial events that may lead to stock market volatility. However, in the research of event detection in the financial field, many studies are focused on micro-blog, news and other network text information. Few scholars have studied the characteristics of financial time series data. Considering that in the financial field, the occurrence of an event often affects both the online public opinion space and the real transaction space, so this paper proposes a multi-source heterogeneous information detection method based on stock transaction time series data and online public opinion text data to detect hot events in the stock market. This method uses outlier detection algorithm to extract the time of hot events in stock market based on multi-member fusion. And according to the weight calculation formula of the feature item proposed in this paper, this method calculates the keyword weight of network public opinion information to obtain the core content of hot events in the stock market. Finally, accurate detection of stock market hot events is achieved. 展开更多
关键词 Relationship network Public OPINION stock TRADING Behavior stock market HOT EVENTS
下载PDF
Predicting Stock Prices Using Polynomial Classifiers: The Case of Dubai Financial Market 被引量:4
4
作者 Khaled Assaleh Hazim El-Baz Saeed Al-Salkhadi 《Journal of Intelligent Learning Systems and Applications》 2011年第2期82-89,共8页
Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile... Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile often accompa-nied by thin trading-volumes and they are susceptible to more manipulation compared to mature markets. Technical analysis of stocks and commodities has become a science on its own;quantitative methods and techniques have been applied by many practitioners to forecast price movements. Lagging and sometimes leading technical indicators pro-vide rich quantitative tools for traders and investors in their attempt to gain advantage when making investment or trading decisions. Artificial Neural Networks (ANN) have been used widely in predicting stock prices because of their capability in capturing the non-linearity that often exists in price movements. Recently, Polynomial Classifiers (PC) have been applied to various recognition and classification application and showed favorable results in terms of recog-nition rates and computational complexity as compared to ANN. In this paper, we present two prediction models for predicting securities’ prices. The first model was developed using back propagation feed forward neural networks. The second model was developed using polynomial classifiers (PC), as a first time application for PC to be used in stock prices prediction. The inputs to both models were identical, and both models were trained and tested on the same data. The study was conducted on Dubai Financial Market as an emerging market and applied to two of the market’s leading stocks. In general, both models achieved very good results in terms of mean absolute error percentage. Both models show an average error around 1.5% predicting the next day price, an average error of 2.5% when predicting second day price, and an average error of 4% when predicted the third day price. 展开更多
关键词 DUBAI FINANCIAL market POLYNOMIAL CLASSIFIERS stock market Neural networks
下载PDF
Scale-Free Behavior in Weighted Stock Network
5
作者 万阳松 陈忠 陈晓荣 《Journal of Southwest Jiaotong University(English Edition)》 2007年第3期242-246,共5页
A weighted stock network model of stock market is presented based on the complex network theory. The model is a weighted random network, in which each vertex denotes a stock, and the weight assigned to each edge is th... A weighted stock network model of stock market is presented based on the complex network theory. The model is a weighted random network, in which each vertex denotes a stock, and the weight assigned to each edge is the cross-correlation coefficient of returns. Analysis of A shares listed at Shanghai Stock Exchange finds that the influence-strength (IS) follows a power-law distribution with the exponent of 2.58. The empirical analysis results show that there are a few stocks whose price fluctuations can powerfully influence the price dynamics of other stocks in the same market. Further econometric analysis reveals that there are significant differences between the positive IS and the negative IS. 展开更多
关键词 stock market network theory POWER-LAW Influence-strength
下载PDF
BASIC EQUATIONS, THEORY AND PRINCIPLES OF COMPUTATIONAL STOCK MARKET (Ⅱ)——BASIC PRINCIPLES
6
作者 云天铨 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第7期20-27,共8页
In this paper, three basic principles for computational stock market are proposed namely,“the Nearest_Time Principle” (NTP),“the Following Tendency Principle” (FTP),and “the Variational Principle on Difference of... In this paper, three basic principles for computational stock market are proposed namely,“the Nearest_Time Principle” (NTP),“the Following Tendency Principle” (FTP),and “the Variational Principle on Difference of Supply and Demand” (VPDSD). The issue, expression, mathematical description and applications of these principles are stated. These applications involve the use in neural networks, basic equations of computational stock market, and the prediction of equilibrium price of stocks etc. 展开更多
关键词 Saint_Venant's principle variational principles neural networks computational stock market
下载PDF
Application of Support Vector Machines Regression in Prediction Shanghai Stock Composite Index
7
作者 Wang Dong, Wu Wen-feng Aetna School of Management, Shanghai Jiaotong University , Shanghai 200052, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第04A期1126-1130,共5页
The SVMs for regression is used to forecast Shanghai stock composite index (SSCI). Implementing structural risk minimization principle, SVMs can overcome the over-fitting problem. The regression uses ε-insensitive lo... The SVMs for regression is used to forecast Shanghai stock composite index (SSCI). Implementing structural risk minimization principle, SVMs can overcome the over-fitting problem. The regression uses ε-insensitive loss function. The training of SVMs leads to a quadratic programming problem and it has a global unique solution. The experiment uses BP neural networks as benchmark for comparison. The results demonstrate that the prediction figure of SSCI can help to find timing for buy or sell, the forecasting variation of SVMs is smaller than that of BP, and the direction forecasting of SVMs is more accurate than that of BP. 展开更多
关键词 stock market SVMS BP neural networks forecasting
下载PDF
Chinese Stock Price and Volatility Predictions with Multiple Technical Indicators
8
作者 Qin Qin Qing-Guo Wang +1 位作者 Shuzhi Sam Ge Ganesh Ramakrishnan 《Journal of Intelligent Learning Systems and Applications》 2011年第4期209-219,共11页
While a large number of studies have been reported in the literature with reference to the use of Regression model and Artificial Neural Network (ANN) models in predicting stock prices in western countries, the Chines... While a large number of studies have been reported in the literature with reference to the use of Regression model and Artificial Neural Network (ANN) models in predicting stock prices in western countries, the Chinese stock market is much less studied. Note that the latter is growing rapidly, will overtake USA one in 20 - 30 years time and thus be-comes a very important place for investors worldwide. In this paper, an attempt is made at predicting the Shanghai Composite Index returns and price volatility, on a daily and weekly basis. In the paper, two different types of prediction models, namely the Regression and Neural Network models are used for the prediction task and multiple technical indicators are included in the models as inputs. The performances of the two models are compared and evaluated in terms of di- rectional accuracy. Their performances are also rigorously compared in terms of economic criteria like annualized return rate (ARR) from simulated trading. In this paper, both trading with and without short selling has been consid- ered, and the results show in most cases, trading with short selling leads to higher profits. Also, both the cases with and without commission costs are discussed to show the effects of commission costs when the trading systems are in actual use. 展开更多
关键词 Regression MODEL Artificial NEURAL network MODEL CHINESE stock market Technical INDICATORS VOLATILITY
下载PDF
基于动态选择预测器的深度强化学习投资组合模型
9
作者 赵淼 谢良 +1 位作者 林文静 徐海蛟 《计算机科学》 CSCD 北大核心 2024年第4期344-352,共9页
近年来,投资组合管理问题在人工智能领域得到了广泛的研究,但现有的基于深度学习的量化交易方法还存在一些问题。首先,对股票的预测模式单一,通常一个模型只能训练出一个交易专家,交易决策也仅根据模型预测结果作出;其次,模型使用的数... 近年来,投资组合管理问题在人工智能领域得到了广泛的研究,但现有的基于深度学习的量化交易方法还存在一些问题。首先,对股票的预测模式单一,通常一个模型只能训练出一个交易专家,交易决策也仅根据模型预测结果作出;其次,模型使用的数据源相对单一,只考虑了股票自身数据,忽略了整个市场风险对股票的影响。针对上述问题,提出了基于动态选择预测器的强化学习模型(DSDRL)。该模型分为3部分,首先提取股票数据的特征并传入多个预测器中,针对不同的投资策略训练多个预测模型,用动态选择器得到当前最优预测结果;其次,利用市场环境评价模块对当前市场风险进行量化,得到合适的投资金额比例;最后,在前两个模块的基础上建立了一种深度强化学习模型模拟真实的交易环境,基于预测的结果和投资金额比例得到实际投资组合策略。文中使用中证500和标普500的日k线数据进行测试验证,结果表明,此模型在夏普率等指标上均优于其他参照模型。 展开更多
关键词 强化学习 LSTM 投资组合 股市预测 神经网络
下载PDF
贸易网络中心性对国际证券资本流动的影响研究——基于全球市场的经验数据
10
作者 欧阳海琴 《湖南大学学报(社会科学版)》 CSSCI 北大核心 2024年第2期76-84,共9页
基于1990—2019年全球131个国家(地区)的进出口贸易等数据构建贸易网络中心性测度指标,采用面板回归模型实证检验贸易网络中心性对国际证券资本流动的影响效应。结果表明:贸易网络中心性水平提升,该国国际证券资本(净)流入将受到抑制;... 基于1990—2019年全球131个国家(地区)的进出口贸易等数据构建贸易网络中心性测度指标,采用面板回归模型实证检验贸易网络中心性对国际证券资本流动的影响效应。结果表明:贸易网络中心性水平提升,该国国际证券资本(净)流入将受到抑制;抑制作用的机制通过影响股票和债券的国际投资得以实现,次贷危机期间及发达国家所受到的抑制效果更趋明显;抑制作用的强弱受各国的股市波动率、银行业发展水平和贷款风险溢价等因素影响,套利因素将促使资本经由处于贸易网络中心的国家流到边缘国家。我国应结合贸易网络中心优势产生的外部影响力和控制力,优化政策体系,提高国际证券资本配置效率。 展开更多
关键词 贸易网络中心性 股市波动率 银行业发展 贷款风险溢价 国际证券资本流动
下载PDF
基于风险溢出的股市双层风险传染模型
11
作者 吴朋薇 《河南科学》 2024年第1期98-105,共8页
从风险关联网络视角出发,根据股票节点的风险溢出水平差异对其进行分层处理,提出股市风险双层传染机制,并基于网络异质性结构对传统SIRS模型提出改进,采用风险溢出效率定义感染率参数.最后,以深证300成分股作为样本数据计算模型相关参数... 从风险关联网络视角出发,根据股票节点的风险溢出水平差异对其进行分层处理,提出股市风险双层传染机制,并基于网络异质性结构对传统SIRS模型提出改进,采用风险溢出效率定义感染率参数.最后,以深证300成分股作为样本数据计算模型相关参数,并进行股市极端风险传染演化仿真分析.研究结果表明:双层传染机制下股市风险传导效应更强,少数风险溢出水平较高的股票节点对风险传染的贡献远高于风险溢出水平较低的其他节点,一旦这些企业发生危机,对股市系统的冲击性和影响力都更大. 展开更多
关键词 风险关联网络 传染病模型 股市风险传染 风险溢出效应
下载PDF
基于DPSO-LSTM超参数调优的股市价格预测
12
作者 张成军 李琪 +3 位作者 王梅 乔译 陈亚当 余文斌 《信息技术》 2024年第5期1-7,共7页
长短期记忆网络(Long Short-Term Memory,LSTM)适合处理和预测时间序列中间隔和延迟较长的重要事件。由于其复杂的网络结构、不确定的超参数和耗时的网络训练,使得人工寻找高效的网络配置成为一项具有挑战性的工作。文中采用分布式粒子... 长短期记忆网络(Long Short-Term Memory,LSTM)适合处理和预测时间序列中间隔和延迟较长的重要事件。由于其复杂的网络结构、不确定的超参数和耗时的网络训练,使得人工寻找高效的网络配置成为一项具有挑战性的工作。文中采用分布式粒子群算法(Distributed Particle Swarm Optimization,DPSO)来有效解决LSTM的超参数调优问题,研究LSTM中最优的隐藏元个数、激活函数以及学习率等超参数的选择,寻找高性能的LSTM。基于沪深300历史交易数据进行价格预测,实验结果表明该方法是有效的,这为超参数调优与股市价格预测提供了新的思路和方法。 展开更多
关键词 长短期记忆网络 人工神经网络 分布式粒子群优化算法 超参数调优 股市预测
下载PDF
上海证券市场的复杂网络特性分析 被引量:38
13
作者 庄新田 闵志锋 陈师阳 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第7期1053-1056,共4页
证券市场作为一个复杂的经济系统,可以用复杂网络来抽象和描述.选取2002年以前在上海证券交易所上市,并且在2002年初至2004年末在上海证券交易所持续交易的股票为节点,股票价格波动相关性为边构建一个无向无权的证券市场网络.利用复杂... 证券市场作为一个复杂的经济系统,可以用复杂网络来抽象和描述.选取2002年以前在上海证券交易所上市,并且在2002年初至2004年末在上海证券交易所持续交易的股票为节点,股票价格波动相关性为边构建一个无向无权的证券市场网络.利用复杂网络的理论和研究方法,分析该网络的拓扑结构,发现该网络具有典型复杂网络的统计特性——小世界效应和无标度特性,从而为研究证券市场提供了一个新的视角. 展开更多
关键词 复杂网络 证券市场网络 无向无权网络 小世界效应 无标度特性
下载PDF
沪港通交易制度能提升中国股票市场稳定性吗?——基于复杂网络的视角 被引量:78
14
作者 刘海飞 柏巍 +1 位作者 李冬昕 许金涛 《管理科学学报》 CSSCI CSCD 北大核心 2018年第1期97-110,共14页
沪港通交易制度的顺利开通,拓宽了两地投资者的投资渠道,推动了我国境内资本市场与国际资本市场接轨,对中国A股市场稳定性有重要影响.本文以复杂网络理论为基础,基于最小生成树算法构建了沪股通市场、港股通市场和沪港通市场关联网络,... 沪港通交易制度的顺利开通,拓宽了两地投资者的投资渠道,推动了我国境内资本市场与国际资本市场接轨,对中国A股市场稳定性有重要影响.本文以复杂网络理论为基础,基于最小生成树算法构建了沪股通市场、港股通市场和沪港通市场关联网络,仿真模拟研究不同市场网络在沪港通试点和正式开通前后四个阶段的抗攻击情况,进而探究我国股票市场的稳定性.研究表明:随着政策的不断发展,沪股通和港股通市场网络在保持局部聚集性的同时不断融合;沪股通市场网络具有较强的聚集性,而港股通市场网络相对分散;面对随意攻击不同市场均可保持较好的鲁棒性,而面对恶意攻击则呈现一定的脆弱性;沪港通政策正式开通后,两市网络的不断融合提高了股票市场的稳定性.研究结论为我国股票市场稳定性研究提供了新的思路,同时也为监管者制定监管政策和上市公司维护股价稳定,提供了新的启示. 展开更多
关键词 沪港通交易制度 复杂网络 股票市场 稳定性
下载PDF
股市中危机传播的SIR模型及其仿真 被引量:49
15
作者 马源源 庄新田 李凌轩 《管理科学学报》 CSSCI 北大核心 2013年第7期80-94,共15页
选择上市公司的大股东信息,建立了上市公司及其大股东间的持股关联网络.考虑到上市公司与股东间因为资金流减小或资金链断裂而相互影响所导致的危机在网络中的传播行为,推导出股市中危机传播的SIR模型的计算方法.继而对网络出现随机故... 选择上市公司的大股东信息,建立了上市公司及其大股东间的持股关联网络.考虑到上市公司与股东间因为资金流减小或资金链断裂而相互影响所导致的危机在网络中的传播行为,推导出股市中危机传播的SIR模型的计算方法.继而对网络出现随机故障和遇到蓄意攻击时,危机在网络中的传播过程进行仿真分析.研究表明:当网络中的大型上市公司或控股集团(Hub节点)被蓄意攻击或出现故障时,危机在网络中传播速度极快,造成的破坏力很大,网络表现出明显的脆弱性,从而容易产生多米诺骨牌效应.该方法为未来对经济危机的传播机理的深入研究提供了一个可供借鉴的方法. 展开更多
关键词 SIR模型 股票市场 复杂网络 危机传播
下载PDF
基于主体内禀特征的股市投资网络模型及鲁棒性研究 被引量:10
16
作者 卞曰瑭 何建敏 庄亚明 《管理工程学报》 CSSCI 北大核心 2013年第1期108-113,共6页
基于网络节点属性特征的建模方法,针对股市投资者投资能力和股票标的物价格关联的内禀特征,遵循股市投资主体间的所有权关联机制,构建了股市投资广义网络及其衍生网络模型,并对网络度分布、簇系数和平均路径长度等统计参数及网络的鲁棒... 基于网络节点属性特征的建模方法,针对股市投资者投资能力和股票标的物价格关联的内禀特征,遵循股市投资主体间的所有权关联机制,构建了股市投资广义网络及其衍生网络模型,并对网络度分布、簇系数和平均路径长度等统计参数及网络的鲁棒性特征进行了模拟仿真分析。研究发现,股市投资广义网络和衍生网络均具有无标度特征和小世界特性,但差异性显著。股市投资衍生网络节点度呈现双幂律分布,且簇系数大小基本不受网络规模大小影响;平均路径长度随网络规模的对数增长而线性增加。此外,股市投资衍生网络在随机攻击策略下的鲁棒性较高,蓄意攻击策略下的鲁棒性较低。 展开更多
关键词 内禀特征 股票市场 投资网络 鲁棒性
下载PDF
金融危机下证券市场网络结构演化的实证分析 被引量:5
17
作者 秦春雷 张巍 朱艳春 《商业研究》 CSSCI 北大核心 2015年第3期98-103,共6页
本文以金融危机下的恒生指数成份股为研究样本,利用最小生成树算法构建复杂网络,从宏观、微观两个层面分析网络结构的动态变化特征,结果发现:最小生成树长度、直径、特征路径长度均在金融危机初期下降至较低水平,中期在波动中有所上升... 本文以金融危机下的恒生指数成份股为研究样本,利用最小生成树算法构建复杂网络,从宏观、微观两个层面分析网络结构的动态变化特征,结果发现:最小生成树长度、直径、特征路径长度均在金融危机初期下降至较低水平,中期在波动中有所上升并逐渐接近初始水平,后期则在经历一番波动后又重回初始水平;网络聚合系数、平均度则在金融危机初期上升至较高水平,中期则维持在此水平并稍有波动,后期下降并维持在较初期更高的水平;在金融危机中期,节点的度较大的股票数量减少,中心节点数量剧增。 展开更多
关键词 金融危机 证券市场网络 拓扑结构 最小生成树
下载PDF
RBF神经网络在股市趋势预测中的应用 被引量:17
18
作者 朱赟 王行愚 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第5期547-550,共4页
将 RBF神经网络应用在股市趋势预测中 ,RBF网络中心点的选取采用最近邻聚类学习算法 ,以上证指数和基金裕阳为对象进行建模与预测 ,结果表明 ,此种网络具有较好的学习和泛化能力 ,在股市趋势预测中取得了较好的效果。
关键词 RBF神经网络 趋势预测 股票市场 最近邻聚类学习算法 股价分析 网络结构
下载PDF
复杂网络视角下的我国股票之间信息溢出研究 被引量:8
19
作者 黄玮强 庄新田 姚爽 《运筹与管理》 CSSCI CSCD 北大核心 2013年第5期177-184,208,共9页
理解股票市场内部股票间的信息溢出规律,对于股票定价、投资组合以及风险防范具有重要的意义。将传统计量经济方法与复杂网络的建模分析方法相结合,从复杂网络的视角出发,实证研究了我国股票市场内股票间的信息溢出关系及其影响因素、... 理解股票市场内部股票间的信息溢出规律,对于股票定价、投资组合以及风险防范具有重要的意义。将传统计量经济方法与复杂网络的建模分析方法相结合,从复杂网络的视角出发,实证研究了我国股票市场内股票间的信息溢出关系及其影响因素、个股信息溢出能力分布及其影响因素。研究发现,股票间较长期收益的相互影响要强于较短期收益;股票收益率相关性较强的股票间存在更显著的信息溢出;市场因素显著增强了股票间的信息溢出效应;股票间的信息溢出效应会随着市场行情的上涨(下跌)而增强(减弱);股票的信息溢出能力呈现尖峰、厚右尾的分布;股票成交金额对个股的信息溢出能力具有显著的正向影响。最后,最小生成树能快速而准确有效地揭示股票间信息溢出规律。 展开更多
关键词 管理科学 股票市场 复杂网络 格兰杰因果检验 信息溢出
下载PDF
基于人工神经网络的股市预测模型 被引量:16
20
作者 孙丹 张秀艳 《吉林大学学报(信息科学版)》 CAS 2002年第4期68-70,共3页
建立了构成基于人工神经网络的 3种股市预测模型 (基本数据模型、技术指标模型和宏观分析模型 ) ,分析了神经网络应用于股市预测的实效性。实证分析表明 ,3种模型对上证综合指数的拟合效果均较好。在“基本数据模型”中 ,建立带有附加... 建立了构成基于人工神经网络的 3种股市预测模型 (基本数据模型、技术指标模型和宏观分析模型 ) ,分析了神经网络应用于股市预测的实效性。实证分析表明 ,3种模型对上证综合指数的拟合效果均较好。在“基本数据模型”中 ,建立带有附加动量项和自适应学习速率的 BP网络 ,具有较快的运算速度和逼近性能。在“技术指标模型”中 ,通过一些股市重要技术指标的引入 ,使其增加了反映市场各方面深层内涵的信息 ,而且网络的泛化能力有所提高。在“宏观分析模型”中 ,引入了影响股市的 5项主要宏观经济指标 ,使模型包含了宏观经济基本面的更多信息 ,强化了股市神经网络模型的应用价值。 展开更多
关键词 股市预测模型 人工神经网络 股票市场 基本数据模型 技术指标模型 宏观分析模型
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部