期刊文献+
共找到188篇文章
< 1 2 10 >
每页显示 20 50 100
Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals
1
作者 Opeyemi Sheu Alamu Md Kamrul Siam 《Journal of Intelligent Learning Systems and Applications》 2024年第4期363-383,共21页
A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange. Historical data, including daily prices and trading volumes, ar... A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange. Historical data, including daily prices and trading volumes, are employed to implement models such as Long Short Term Memory (LSTM) networks, Gated Recurrent Units (GRUs), Autoregressive Integrated Moving Average (ARIMA), and Autoregressive Moving Average (ARMA). These models are assessed over three-time horizons: short-term (1 year), medium-term (2.5 years), and long-term (5 years), with performance measured by Mean Squared Error (MSE) and Mean Absolute Error (MAE). The stability of the time series is tested using the Augmented Dickey-Fuller (ADF) test. Results reveal that deep learning models, particularly LSTM, outperform traditional methods by capturing complex, nonlinear patterns in the data, resulting in more accurate predictions. However, these models require greater computational resources and offer less interpretability than traditional approaches. The findings highlight the potential of deep learning for improving financial forecasting and investment strategies. Future research could incorporate external factors such as social media sentiment and economic indicators, refine model architectures, and explore real-time applications to enhance prediction accuracy and scalability. 展开更多
关键词 stock price prediction Deep Learning Traditional Model Evaluation Metrics Comparative Analysis predictive Modeling LSTM ARIMA ARMA GRU
下载PDF
Comparative Analysis of Machine Learning Models for Stock Price Prediction: Leveraging LSTM for Real-Time Forecasting
2
作者 Bijay Gautam Sanif Kandel +1 位作者 Manoj Shrestha Shrawan Thakur 《Journal of Computer and Communications》 2024年第8期52-80,共29页
The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agil... The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agile Scrum and the Obtain, Scrub, Explore, Model, and iNterpret (OSEMN) methodology. Six machine learning models, namely Linear Forecast, Naive Forecast, Simple Moving Average with weekly window (SMA 5), Simple Moving Average with monthly window (SMA 20), Autoregressive Integrated Moving Average (ARIMA), and Long Short-Term Memory (LSTM), are compared and evaluated through Mean Absolute Error (MAE), with the LSTM model performing the best, showcasing its potential for practical financial applications. A Django web application “Predict It” is developed to implement the LSTM model. Ethical concerns related to predictive modeling in finance are addressed. Data quality, algorithm choice, feature engineering, and preprocessing techniques are emphasized for better model performance. The research acknowledges limitations and suggests future research directions, aiming to equip investors and financial professionals with reliable predictive models for dynamic markets. 展开更多
关键词 stock price prediction Machine Learning LSTM ARIMA Mean Squared Error
下载PDF
Stock Price Prediction Based on the Bi-GRU-Attention Model
3
作者 Yaojun Zhang Gilbert M. Tumibay 《Journal of Computer and Communications》 2024年第4期72-85,共14页
The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest... The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest for further in-depth mining and research. Mathematical statistics methods struggle to deal with nonlinear relationships in practical applications, making it difficult to explore deep information about stocks. Meanwhile, machine learning methods, particularly neural network models and composite models, which have achieved outstanding results in other fields, are being applied to the stock market with significant results. However, researchers have found that these methods do not grasp the essential information of the data as well as expected. In response to these issues, researchers are exploring better neural network models and combining them with other methods to analyze stock data. Thus, this paper proposes the ABiGRU composite model, which combines the attention mechanism and bidirectional gated recurrent unit (GRU) that can effectively extract data features for stock price prediction research. Models such as LSTM, GRU, and Bi-LSTM are selected for comparative experiments. To ensure the credibility and representativeness of the research data, daily stock price indices of BYD are chosen for closing price prediction studies across different models. The results show that the ABiGRU model has a lower prediction error and better fitting effect on three index-based stock prices, enhancing the learning efficiency of the neural network model and demonstrating good prediction stability. This suggests that the ABiGRU model is highly adaptable for stock price prediction. 展开更多
关键词 Machine Learning Attention Mechanism LSTM Neural Network ABiGRU Model stock price prediction
下载PDF
ARIMA and Facebook Prophet Model in Google Stock Price Prediction 被引量:2
4
作者 Beijia Jin Shuning Gao Zheng Tao 《Proceedings of Business and Economic Studies》 2022年第5期60-66,共7页
We use the Autoregressive Integrated Moving Average(ARIMA)model and Facebook Prophet model to predict the closing stock price of Google during the COVID-19 pandemic as well as compare the accuracy of these two models... We use the Autoregressive Integrated Moving Average(ARIMA)model and Facebook Prophet model to predict the closing stock price of Google during the COVID-19 pandemic as well as compare the accuracy of these two models’predictions.We first examine the stationary of the dataset and use ARIMA(0,1,1)to make predictions about the stock price during the pandemic,then we train the Prophet model using the stock price before January 1,2021,and predict the stock price after January 1,2021,to present.We also make a comparison of the prediction graphs of the two models.The empirical results show that the ARIMA model has a better performance in predicting Google’s stock price during the pandemic. 展开更多
关键词 ARIMA model Facebook Prophet model stock price prediction Financial market Time series
下载PDF
Stock Price Prediction Using Predictive Error Compensation Wavelet Neural Networks
5
作者 Ajla Kulaglic Burak Berk Ustundag 《Computers, Materials & Continua》 SCIE EI 2021年第9期3577-3593,共17页
:Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that i... :Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that improves the prediction of next day closing prices.In the proposed model we use multiple neural networks where the first one uses the closing stock prices from multiple-scale time-domain inputs.An additional network is used for error estimation to compensate and reduce the prediction error of the main network instead of using recurrence.The performance of the proposed model is evaluated using six different stock data samples in the New York stock exchange.The results have demonstrated significant improvement in forecasting accuracy in all cases when the second network is used in accordance with the first one by adding the outputs.The RMSE error is 33%improved when the proposed PEC-WNN model is used compared to the Long ShortTerm Memory(LSTM)model.Furthermore,through the analysis of training mechanisms,we found that using the updated training the performance of the proposed model is improved.The contribution of this study is the applicability of simultaneously different time frames as inputs.Cascading the predictive error compensation not only reduces the error rate but also helps in avoiding overfitting problems. 展开更多
关键词 predictive error compensating wavelet neural network time series prediction stock price prediction neural networks wavelet transform
下载PDF
Research on Stock Price Prediction Method Based on the GAN-LSTM-Attention Model
6
作者 Peng Li Yanrui Wei Lili Yin 《Computers, Materials & Continua》 SCIE EI 2025年第1期609-625,共17页
Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attent... Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price prediction.Firstly,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock price.The discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices.Secondly,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation study.The results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction. 展开更多
关键词 stock price prediction generative adversarial network attention mechanism time-series prediction
下载PDF
A Machine Learning Approach: Enhancing the Predictive Performance of Pharmaceutical Stock Price Movement during COVID
7
作者 Beilei He Weiyi Han Suet Ying Isabelle Hon 《Journal of Data Analysis and Information Processing》 2022年第1期1-21,共21页
Predicting stock price movement direction is a challenging problem influenced by different factors and capricious events. The conventional stock price prediction machine learning models heavily rely on the internal fi... Predicting stock price movement direction is a challenging problem influenced by different factors and capricious events. The conventional stock price prediction machine learning models heavily rely on the internal financial features, especially the stock price history. However, there are many outside-of-company features that deeply interact with the companies’ stock price performance, especially during the COVID period. In this study, we selected 9 COVID vaccine companies and collected their relevant features over the past 20 months. We added handcrafted external information, including COVID-related statistics and company-specific vaccine progress information. We implemented, evaluated, and compared several machine learning models, including Multilayer Perceptron Neural Networks with logistic regression and decision trees with boosting and bagging algorithms. The results suggest that the application of feature engineering and data mining techniques can effectively enhance the performance of models predicting stock price movement during the COVID period. The results show that COVID-related handcrafted features help to increase the model prediction accuracy by 7.3% and AUROC by 6.5% on average. Further exploration showed that with data selection the decision tree model with gradient, boosting algorithm achieved 70% in AUROC and 66% in the accuracy. 展开更多
关键词 Machine Learning stock price Trend prediction Feature Engineering
下载PDF
The Prediction of Stock Prices Based on PCA and BP Neural Networks
8
作者 Xiaoping Yang 《Chinese Business Review》 2005年第5期64-68,共5页
There are many factors to influence stock prices indeed. The research method combining models and examples is applied to study how the factors affect stock prices here. Firstly, the principal component analysis is use... There are many factors to influence stock prices indeed. The research method combining models and examples is applied to study how the factors affect stock prices here. Firstly, the principal component analysis is used to deal with a set of variables as the input of a BP Neural Network. Therefore, not only is the number of variables less, but also most of the information of original variables is kept. Then, the BP Neural Network is established to analyze and predict stock prices. Finally, the analysis of Chinese stock market illustrates that the method predicting stock prices is satisfying and feasible. 展开更多
关键词 BP neural networks prediction PCA stock prices
下载PDF
基于LSTM模型的股票价格预测
9
作者 姜淑瑜 《江苏商论》 2025年第1期83-86,共4页
股票市场的价格波动被视为经济发展的晴雨表。对股票价格的精准预测一直是众多研究学者努力的方向。随着人工智能技术与大数据技术的不断应用与发展以及疫情防控期间国内经济变化和国际形势变换给股价带来的巨大波动,如何对股价进行精... 股票市场的价格波动被视为经济发展的晴雨表。对股票价格的精准预测一直是众多研究学者努力的方向。随着人工智能技术与大数据技术的不断应用与发展以及疫情防控期间国内经济变化和国际形势变换给股价带来的巨大波动,如何对股价进行精准预测变得越来越重要。本文根据股票市场的特点和LSTM(Long Short-Term Memory)递归神经网络的特性,对浦发银行(600000)股价进行预测。实验结果表明,LSTM模型预测股价,结果误差小,精准度高,具有良好的预测效果。 展开更多
关键词 股票价格预测 LSTM 机器学习 神经网络
下载PDF
ARIMA Model in the Application of Shanghai and Shenzhen Stock Index
10
作者 Shichang Shen Yue Shen 《Applied Mathematics》 2016年第3期171-176,共6页
In the paper, based on the data of Shanghai and Shenzhen 300 stock index in 2011, the ARIMA model was established by using Eviews 6, and the historical trend of stock price was found out. The model was used to provide... In the paper, based on the data of Shanghai and Shenzhen 300 stock index in 2011, the ARIMA model was established by using Eviews 6, and the historical trend of stock price was found out. The model was used to provide a reference for the investors. 展开更多
关键词 Time Series ARIMA stock price prediction
下载PDF
融合情感分析和GAN-TrellisNet的股价预测方法 被引量:1
11
作者 葛业波 刘文杰 顾雨晨 《计算机工程与应用》 CSCD 北大核心 2024年第12期314-324,共11页
将时序深度神经网络应用于股票价格预测,已成为量化金融领域的重要研究方向。时序神经网络具有很好的序列数据捕捉能力和学习记忆能力,在股票预测上有一定适用性。但是现有的模型大多存在预测准确度不高、模型结构复杂导致训练时间较长... 将时序深度神经网络应用于股票价格预测,已成为量化金融领域的重要研究方向。时序神经网络具有很好的序列数据捕捉能力和学习记忆能力,在股票预测上有一定适用性。但是现有的模型大多存在预测准确度不高、模型结构复杂导致训练时间较长等问题.为了解决以上问题,提出了一种基于情感分析和GAN-TrellisNet的股价预测方法。提出了一个基于LSTM-CNN的情感分析模型,用于分析爬虫获取的主流金融论坛股票评论,并获得股票情感指数。为了提高预测准确度,将情感指数和百度搜索指数加入股票交易数据中作为训练集,提出了一个基于TrellisNet和CNN的改进型GAN股价预测模型,利用TrellisNet生成器的卷积特性来捕捉数据的局部特征,选取特征提取能力较强的CNN作为判别器来区别预测结果和真实股价。通过选取10只代表性股票和三种大盘指数的不同时段数据进行算法验证,结果表明,与ConvLSTM和GAN-LSTM预测模型相比,GAN-TrellisNet模型能有效缩短训练时间,提高预测准确率。 展开更多
关键词 量化金融 股价预测 情感分析 百度指数 生成对抗网络 TrellisNet
下载PDF
融合投资者情绪的S_AM_BiLSTM股价预测模型 被引量:1
12
作者 袁婧 潘甦 +1 位作者 谢浩 徐文鹏 《计算机工程与应用》 CSCD 北大核心 2024年第7期274-281,共8页
股票价格预测一直是金融领域的研究热点之一。然而,股票价格的形成机制是相当复杂的,各种因素都可能会导致股票价格的变化。为此,提出了一种基于深度学习方法并融合多源数据和投资者情绪的股票价格预测混合模型(S_AM_BiLSTM)。利用文本... 股票价格预测一直是金融领域的研究热点之一。然而,股票价格的形成机制是相当复杂的,各种因素都可能会导致股票价格的变化。为此,提出了一种基于深度学习方法并融合多源数据和投资者情绪的股票价格预测混合模型(S_AM_BiLSTM)。利用文本卷积神经网络(TextCNN)对从股票论坛中提取的投资者评论进行情绪分析,并计算情绪指数。将情绪指数(sentiment)、技术指标和股票历史交易数据作为股价预测模型的特征集,采用双向长短时记忆神经网络(BiLSTM)对股票的收盘价进行预测,并在此基础上加入注意力机制(attention mechanism),提高预测精度。为了证明模型的有效性和适用性,随机选取4个重点行业的股票进行实证研究。实验结果表明,与其他单一模型和不含情绪因子的模型相比,所提出的混合模型的效果更优越。 展开更多
关键词 深度学习 双向长短期记忆网络(BiLSTM) 文本卷积神经网络(TextCNN) 股价预测 情绪分析
下载PDF
可解释性分层神经模糊网络的股票价格预测算法
13
作者 廖宏昊 胡峰 邓维斌 《计算机工程与设计》 北大核心 2024年第12期3615-3621,共7页
针对现有的股票价格预测模型难以兼顾精度与可解释性的问题,提出一种基于分层神经模糊网络的股票价格预测模型。提出一种结合注意力机制的自适应神经模糊网络单元(ANFIS-A),以此单元构建分层自适应神经模糊网络;结合二进制灰狼优化算法(... 针对现有的股票价格预测模型难以兼顾精度与可解释性的问题,提出一种基于分层神经模糊网络的股票价格预测模型。提出一种结合注意力机制的自适应神经模糊网络单元(ANFIS-A),以此单元构建分层自适应神经模糊网络;结合二进制灰狼优化算法(BGWO),提出一种特征子集选择算法;提出一种规则消除的递归算法,进一步减少规则数量,提高规则的可解释性。实验结果表明,该模型在预测股票价格方面具有较高的准确性和可解释性。 展开更多
关键词 灰狼优化算法 层次自适应模糊神经网络 注意力机制 股票价格预测 可解释性 金融时间序列 规则消除
下载PDF
RF-MIP-LSTM股价预测模型 被引量:1
14
作者 张颖 李路 《计算机工程与应用》 CSCD 北大核心 2024年第17期272-281,共10页
长短时记忆(LSTM)神经网络在预测股价波动这类复杂的非线性系统中展现了较好的性能,然而LSTM模型没有考虑三个门控机制的耦合关系和长时记忆对模型输入的影响。通过增加输入门控的长时记忆窥视和耦合了三个门控机制的唯一门机制,增强了... 长短时记忆(LSTM)神经网络在预测股价波动这类复杂的非线性系统中展现了较好的性能,然而LSTM模型没有考虑三个门控机制的耦合关系和长时记忆对模型输入的影响。通过增加输入门控的长时记忆窥视和耦合了三个门控机制的唯一门机制,增强了长时记忆信息传递和模型的稳定性,构建了基于随机森林特征选择的RF-MIP-LSTM模型,并推导了模型的前向与反向传播算法。通过对中国农业银行、盐田港、格力电器三只股票价格和上证指数的预测和比较,表明RF-MIP-LSTM模型的收敛速度和预测精度均优于LSTM模型。 展开更多
关键词 股价预测 随机森林(RF) 长短时记忆(LSTM)神经网络 长时窥视孔
下载PDF
中国科创板股票价格变动预测模型研究
15
作者 褚建平 孙艳琳 薛茜 《武汉理工大学学报(信息与管理工程版)》 CAS 2024年第2期343-348,共6页
为更好地预测中国科创板股票价格变动走势,使用随机森林和支持向量机两种机器学习算法对中国股票市场的历史数据进行分析,选择318支科创板股票作为样本数据集,并以华兴源创(688001.SH)为例,采用支持向量机和随机森林的原理和算法流程构... 为更好地预测中国科创板股票价格变动走势,使用随机森林和支持向量机两种机器学习算法对中国股票市场的历史数据进行分析,选择318支科创板股票作为样本数据集,并以华兴源创(688001.SH)为例,采用支持向量机和随机森林的原理和算法流程构建数据样本,比较基于昨日收盘价和基于前几日收盘价两种思路的预测效果。结果表明:当基于思路1预测时,随机森林模型的正确率为65.55%,支持向量机模型的正确率为70.59%;当基于思路2预测时,随机森林模型的正确率为43.70%,支持向量机模型的正确率为62.18%。在模型选择上,支持向量机对于股市预测水平更加切合,应更多地采用向量机模型实现对中国科创板股票的预测。在指标选取上,当日各项指标要比历史收盘价数据更加具有参考性,且未来结果不仅受到历史趋势的影响,还可能受到当日的各项指标影响。 展开更多
关键词 股票价格变动 预测模型 随机森林 支持向量机 科创板股票
下载PDF
基于K-means-LSTM模型的证券股价预测 被引量:2
16
作者 肖田田 《科技和产业》 2024年第3期210-215,共6页
鉴于股票数据具有非平稳、非线性等特征,传统的统计模型无法精准预测股票价格的未来趋势。针对这个问题,构建一种混合深度学习方法来提高股票预测性能。首先,通过将距离算法修改为DTW(动态时间归整),令K-means聚类算法拓展为更适用于时... 鉴于股票数据具有非平稳、非线性等特征,传统的统计模型无法精准预测股票价格的未来趋势。针对这个问题,构建一种混合深度学习方法来提高股票预测性能。首先,通过将距离算法修改为DTW(动态时间归整),令K-means聚类算法拓展为更适用于时间序列数据的K-means-DTW,聚类出价格趋势相似的证券;然后,通过聚类数据来训练LSTM(长短时记忆网络)模型,以实现对单支股票价格的预测。实验结果表明,混合模型K-means-LSTM表现出更好的预测性能,其预测精度和稳定性均优于单一LSTM模型。 展开更多
关键词 股票价格预测 K-MEANS DTW(动态时间归整) K-means-LSTM(K均值-长短时记忆网络)混合模型
下载PDF
灰狼算法优化BP神经网络的股价预测 被引量:1
17
作者 向朝菊 《科技资讯》 2024年第10期253-256,共4页
探讨使用灰狼算法改进BP神经网络的方法,旨在提高BP神经网络的训练效果和性能。首先,介绍了BP神经网络的基本原理和灰狼算法的基本概念。然后,将灰狼算法应用于BP神经网络的权重和偏置值的优化过程中,通过调整这些参数来降低误差函数,... 探讨使用灰狼算法改进BP神经网络的方法,旨在提高BP神经网络的训练效果和性能。首先,介绍了BP神经网络的基本原理和灰狼算法的基本概念。然后,将灰狼算法应用于BP神经网络的权重和偏置值的优化过程中,通过调整这些参数来降低误差函数,从而提高网络的准确性和收敛速度。实验结果表明:灰狼算法优化的BP神经网络具有较好的性能和泛化能力。其次,还用股票数据进行了实证分析,该模型在股票价格预测方面具有较高的准确性和稳定性,可为投资者提供有效的决策参考。最后,总结了本研究的贡献和未来的研究方向。 展开更多
关键词 灰狼算法 BP神经网络 参数优化 股价预测
下载PDF
面向金融风险预测的时序图神经网络综述
18
作者 宋凌云 马卓源 +1 位作者 李战怀 尚学群 《软件学报》 EI CSCD 北大核心 2024年第8期3897-3922,共26页
金融风险预测在金融市场监管和金融投资中扮演重要角色,近年来已成为人工智能和金融科技领域的热门研究主题.由于金融事件的实体之间存在复杂的投资、供应等关系,现有的金融风险预测研究常利用各种静态和动态的图结构来建模金融实体间... 金融风险预测在金融市场监管和金融投资中扮演重要角色,近年来已成为人工智能和金融科技领域的热门研究主题.由于金融事件的实体之间存在复杂的投资、供应等关系,现有的金融风险预测研究常利用各种静态和动态的图结构来建模金融实体间的关系,并通过卷积图神经网络等方法将相关的图结构信息嵌入金融实体的特征表示中,使其能够同时表征金融风险相关的语义和结构信息.然而,以前的金融风险预测综述仅关注了基于静态图结构的研究,这些研究忽视了金融事件中实体间关系会随时间动态变化的特性,降低了风险预测结果的准确性.随着时序图神经网络的发展,越来越多的研究开始关注基于动态图结构的金融风险预测,对这些研究进行系统、全面的回顾有助于学习者构建面向金融风险预测研究的完整认知.根据从动态图中提取时序信息的不同途径,首先综述3类不同的时序图神经网络模型.然后,根据不同的图学习任务,分类介绍股价趋势风险预测,贷款违约风险预测,欺诈交易风险预测,以及洗钱和逃税风险预测共4个领域的金融风险预测研究.最后,总结现有时序图神经网络模型在金融风险预测方面遇到的难题和挑战,并展望未来研究的潜在方向. 展开更多
关键词 时序图神经网络 金融风险预测 股价趋势风险 贷款违约风险 欺诈交易风险 洗钱和逃税风险
下载PDF
基于集成深度学习的股票价格预测
19
作者 郭慧婷 常延贞 +1 位作者 厉亮 徐永利 《现代信息科技》 2024年第9期114-119,共6页
股票市场是国民经济的一个重要组成部分,股票投资是一项高风险但同时高回报的投资方式。为了给股票投资者提供参考,对未来股票价格进行了预测研究。设计了一种基于深度学习的集成预测算法,对未来5日的股价进行预测。研究结果显示,基于... 股票市场是国民经济的一个重要组成部分,股票投资是一项高风险但同时高回报的投资方式。为了给股票投资者提供参考,对未来股票价格进行了预测研究。设计了一种基于深度学习的集成预测算法,对未来5日的股价进行预测。研究结果显示,基于预测性能的权重分配集成方法相比基本模型平均绝对误差(MAE)降低,在平均绝对误差评价指标上给出了最好的结果。 展开更多
关键词 深度学习 股价预测 集成学习
下载PDF
基于生成对抗网络的股票收盘价预测方法
20
作者 彭乾 张龑 《湖北大学学报(自然科学版)》 CAS 2024年第6期743-753,共11页
针对股票市场的非线性、不平稳性和数据的复杂性带来的预测挑战,本研究提出一种基于生成对抗网络的改进型股票价格预测模型(MAC-WGAN-GP)。该模型通过融合CNN-BiLSTM模型和多头注意力机制作为生成器,用以更准确地生成股票收盘价预测;而... 针对股票市场的非线性、不平稳性和数据的复杂性带来的预测挑战,本研究提出一种基于生成对抗网络的改进型股票价格预测模型(MAC-WGAN-GP)。该模型通过融合CNN-BiLSTM模型和多头注意力机制作为生成器,用以更准确地生成股票收盘价预测;而判别器则采用多层卷积神经网络,负责判定生成的收盘价与实际值的差异。为了提高模型的预测性能和稳定性,本研究还结合经验模态分解(EMD)和技术指标,以从原始股票收盘价数据中提取更有效的特征。实验采用了中国银行、工商银行、建设银行和农业银行4个不同的股票数据集进行验证,展示了MAC-WGAN-GP模型在MSE、RMSE、MAE和R2等4个评价指标上相比于基线模型的改进,证明其在股票预测任务中的有效性和高拟合能力。 展开更多
关键词 股票价格预测 生成对抗网络 多头注意力机制 CNN-BiLSTM 经验模态分解
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部