[Objective]This study was to reveal the physiological and ecological mechanism of growth and development of test-tube seedlings.[Methods]Leaf stomata of test-tube seedlings of D.loddigesii and D.candidum at different ...[Objective]This study was to reveal the physiological and ecological mechanism of growth and development of test-tube seedlings.[Methods]Leaf stomata of test-tube seedlings of D.loddigesii and D.candidum at different growth and development stages were observed under scanning electron microscope,and their fluorescence induction response curve was assayed by using modulate fluorometer.[Results] At each growth and development stage,D.loddigesii test-tube seedling has a higher leaf stomatal density over D.candidum,while a lower stomata opening rate.Along with the growth,the size of stomata of both D.loddigesii and D.candidum did not change obviously,but their stoma density increased by 83% and 17.6% respectively.Leaf stomata opening rate reached the highest at the age of 240-day-old.Under the conditions of three settled light intensities,stomatal opening degree of D.loddigesii was increased by the intensity of illumination,the maximum aperture occurred at the light intensity of 54 μmol/m2·s.Given the same culture condition,both the maximum electron transport rate(14 μmol/m2·s)and light saturation point(318 μmol/m2·s)of D.loddigesii test-tube seedling are lower than that of D.candidum(20 μmol/m2·s,483 μmol/m2·s).Moreover,the potential photosynthetic capacity of D.loddigesii is relatively poor.[Conclusion]The photosynthetic rate varies among different species of Dendrobium,which could be attributed to their different stomatal characteristics.Usually,the light intensity of tissue culture chamber is set up as 27 μmol/(m2·s),where both D.loddigesii and D.candidum do not acquire an optimal state for their leaf stomatal opening.Considering the characteristics to select suitable culture condition,the stomatal aperture and photosynthetic rate could be enhanced,which can promote the growth and development of test-tube seedlings.展开更多
A dynamic plant architecture is the basis of plant adaptation to changing environments.Although many genes regulating leaf rolling have been identified,genes directly associated with water homeostasis are largely unkn...A dynamic plant architecture is the basis of plant adaptation to changing environments.Although many genes regulating leaf rolling have been identified,genes directly associated with water homeostasis are largely unknown.Here,we isolated a rice mutant,dynamic leaf rolling 1(dlr1),characterized by‘leaf unfolding in the morning-leaf rolling at noon-leaf unfolding in the evening’during a sunny day.Water content was decreased in rolled leaves and water sprayed on leaves caused reopening,indicating that in vivo water deficiency induced the leaf rolling.Map-based cloning and expression tests demonstrated that an A1400G single base mutation in Oryza sativa Polygalacturonase 1(OsPG1)/PHOTO-SENSITIVE LEAF ROLLING 1(PSL1)was responsible for the dynamic leaf rolling phenotype in the dlr1 mutant.OsPG1 encodes a polygalacturonase,one of the main enzymes that degrade demethylesterified homogalacturonans in plant cell walls.OsPG1 was constitutively expressed in various tissues and was enriched in stomata.Mutants of the OsPG1 gene exhibited defects in stomatal closure and decreased stomatal density,leading to reduced transpiration and excessive water loss under specific conditions,but had normal root development.Further analysis revealed that mutation of OsPG1 led to reduced pectinase activity in the leaves and increased demethylesterified homogalacturonans in guard cells.Our findings reveal a mechanism by which OsPG1 modulates water homeostasis to control dynamic leaf rolling,providing insights for plants to adapt to environmental variation.展开更多
Mikania micrantha is a fast-growing global invasive weed species that causes severe damage to natural ecosystems and very large economic losses of forest and crop production.It has advantages in photosynthesis,includi...Mikania micrantha is a fast-growing global invasive weed species that causes severe damage to natural ecosystems and very large economic losses of forest and crop production.It has advantages in photosynthesis,including a similar net photosynthetic rate as C4 plants and a higher carbon fixation capacity.We used a combination of genomics and transcriptomics approaches to study the evolutionary mechanisms and circadian expression patterns of M.micrantha.In M.micrantha,16 positive selection genes focused on photoreaction and utilization of photoassimilates.In different tissues,98.1%of the genes associated with photoresponse had high expression in stems,and more than half of the genes of the C4 cycle had higher expression in stems than in leaves.In stomatal opening and closing,2 genes of carbonic anhydrase(CAs)had higher expression at 18:00 than at 8:00,and the slow anion channel 1(SLAC1)and high-leaf-temperature 1 kinase(HT1)genes were expressed at low levels at 18:00.In addition,genes associated with photosynthesis had higher expression levels at 7:00 and 17:00.We hypothesized that M.micrantha may undergo photosynthesis in the stem and flower organs and that some stomata of the leaves were opening at night by CO_(2)signals.In addition,its evolution may attenuate photoinhibition at high light intensities,and enhance more efficient of photosynthesis during low light intensity.And the tissue-specific photosynthetic types and different diurnal pattern of photosynthetic-related genes may contribute to its rapid colonization of new habitats of M.micrantha.展开更多
Rice(Oryza sativa L.)is one of the most important cereal crops in the world.Bakanae disease is a significant rice disease widely distributed in rice-growing regions worldwide.Therefore,the present investigation aimed ...Rice(Oryza sativa L.)is one of the most important cereal crops in the world.Bakanae disease is a significant rice disease widely distributed in rice-growing regions worldwide.Therefore,the present investigation aimed to assess the optimal concentrations of paclobutrazol(PBZ)as a treatment for rice grains(cv.Sakha 108)to control bakanae disease,also evaluating its impact on grain germination,seedling growth parameters as well as disease index.Paclobutrazol concentrations had no significant impact on seed germination,regardless of whether the seeds were incubated with Fusarium fujikuroi or not.Application of PBZ,either alone or in combination with fungal pathogens,negatively impacted the rice seedlings’height.Paclobutrazol at 25,50 and 100 mg/L,combined with the fungal pathogen positively impacted root length.Paclobutrazol at 3 and 6 mg/L mitigated the adverse impact on chlorophyll pigments content in infected seedlings.The highest proline contents were achieved by 100 mg/L PBZ alone or in combination with fungal pathogens.It has been observed that the application of PBZ,either alone or in combination with a fungal pathogen,leads to the enhancement of catalase,peroxidase,and polyphenol oxidase activities.The median lethal concentration of PBZ was 0.874 mg/L;applying low concentrations of paclobutrazol effectively increased the percentage of fungal growth suppression.Application of PBZ,at higher concentrations(50 and 100 mg/L),decreased infection percentage and disease severity index(DSI)significantly.These findings suggest that PBZ can be an effective treatment for controlling bakanae disease and enhancing resistance in rice plants.展开更多
1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyi-D- erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesi...1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyi-D- erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the role of the MEP pathway in plant development and metabolism, we carried out detailed analyses on a dxr mutant (GK_215C01) and two DXR transgenic co-suppression fines, OX-DXR-L2 and OX-DXR-L7. We found that the dxr mutant was albino and dwarf. It never bolted, had significantly reduced number of trichomes and most of the stomata could not close normally in the leaves. The two co-suppression lines produced more yellow inflorescences and albino sepals with no trichomes. The transcription levels of genes involved in tricbome initiation were found to be strongly affected, including GLABRA1, TRANSPARENT TESTA GLABROUS 1, TRIPTYCHON and SPINDLY, expression of which is regulated by gibberellic acids (GAs). Exogenous application of GA3 could partially rescue the dwarf phenotype and the trichome initiation of dxr, whereas exogenous application of abscisic acid (ABA) could rescue the stomata closure defect, suggesting that lower levels of both GA and ABA contribute to the phenotype in the dxr mutants. We further found that genes involved in the biosynthetic pathways of GA and ABA were coordinately regulated. These results indicate that disruption of the plastidial MEP pathway leads to biosynthetic deficiency of photosynthetic pigments, GAs and ABA, and thus the developmental abnormalities, and that the flux from the cytoplasmic mevalonate pathway is not sufficient to rescue the deficiency caused by the blockage of the plastidial MEP pathway. These results reveal a critical role for the MEP biosynthetic pathway in controlling the biosynthesis of isoprenoids.展开更多
To observe the regulating effects of vascular endothelial growth factor (VEGF) and angiotensinⅡ (ANG II) on the frog’s pericardium, lymphatic stomata and angiogenesis so as to reveal their effects and mechanism on t...To observe the regulating effects of vascular endothelial growth factor (VEGF) and angiotensinⅡ (ANG II) on the frog’s pericardium, lymphatic stomata and angiogenesis so as to reveal their effects and mechanism on the mesothelial permeability, lymphatic stoma regulation and myocardial hypertrophy. Methods. VEGF and ANGⅡ were injected into the frog’s peritoneal cavity so as to examine the changes of the pericardial stromata by using transmission electron microscopy, scanning electron microscopy and computerized imaging analysis. Results. Scattered distributed pericardial stomata were found on the parietal pericardium of the frog with a few sinusoid mesothelial cells, whose blood supply was directly from the cardiac chambers flowing into the trabecular spaces of the myocardium (because there are no blood vessels in the myocardium of the frog). The average diameters of the pericardial stomata in VEGF and ANGⅡ groups were 1.50μ m and 1.79μ m respectively, which were much larger than those in the control group (0.72μ m, P Conclusions. VEGF and ANGⅡ could strongly regulate the pericardial stomata by increasing their numbers and openings with larger diameters and higher distribution density. They could also increase the sinusoid areas with the result of the higher permeability of the pericardium, which clearly indicated that VEGF and ANGⅡ could speed up the material transfer of the pericardial cavity and play an important role in preventing myocardial interstitial edema. Yet there was no strong evidence to show the angiogenesis in the myocardium.展开更多
The development of the science of cytology and genetics, particularly on cell structure and function provided a breakthrough for breeders and allowed for early selection. Character of stomata density on some commoditi...The development of the science of cytology and genetics, particularly on cell structure and function provided a breakthrough for breeders and allowed for early selection. Character of stomata density on some commodities was reported as important factor to determine the disease resistance. The research was done for getting information about the differences in the stomata characters influenced on the level of Vascular Streak dieback (VSD) resistance on cocoa. The research was conducted in the Laboratory of Genetics, Gadjah Mada University and leaves samples were conducted in Kendeng Lembu Gardens, PTPN XII. The research used a split plot design with three factors included the type of clones with different levels of VSD disease resistance (PA 191, BL 703 and GS 29), leaf position (top, middle and base) and leaf age (young and old). Stomata characters included number of stomata, stomata opening width, stomata wide and stomata diameter were observed. The results showed that the stomata characters in three cacao genotypes with different resistance levels indicated a difference in number of stomata, stomata size, stomata opening width, stomata wide and stomata diameter. Stomata number, stomata opening width and stomata diameter on PA 191 (resistance clone) were lower than the susceptible clones (BL 703 dan GS 29). The lowest of number and diameter stomata on the base position on the old leaves tissues. Number of stomata, stomata opening width and stomata diameter were estimated role in mechanism of VSD resistance and that were expected could be used as criteria selection to VSD resistance.展开更多
[ Objective] The study aimed to discuss the relation of leaf stomatal traits to yield and drought resistance of wheat. [ Method] Using the DH population of wheat cultivar Hanxuanl0/Lumai14 as the test object, the rela...[ Objective] The study aimed to discuss the relation of leaf stomatal traits to yield and drought resistance of wheat. [ Method] Using the DH population of wheat cultivar Hanxuanl0/Lumai14 as the test object, the relation of leaf stomatal density (SD), length (SL) and width ( SW), stomatal conductance (g,), photosynthetic rate ( Pn ), transpiration rate ( Tr) to grain yield per plant and index of drought resistance (IDR) on the 10th and 20t" day after anthesis under the conditions of drought stress and normal irrigation were discussed by the methods of correlation analysis and path analysis. [ Result] Under the two water conditions, the correlations of these stomatal traits with yield components and IDR were mostly not significant on the 10t" day after anthesis, but there were significantly positive correlations between thousand kernel weight (TKW) and these traits on the 20^th day after anthesis. Path analysis showed that g,, Pn and Tt, were main factors affecting yield per plant (YPP) and IDR, and they had stron- ger direct effects on YPP and IDR, while their indirect interaction was also strong. The direct effects of SD, SL and SW on YPP and IDR were small, as well as their indirect action among SD, SL and SW. On the other hand, the correlations between SD and SL were significant, and the correlations of SL with SW, gn, P, and Tt, were extremely significant on the 10th and 20th day after anthesis under the two water conditions. However, the correlations of SD and SL with g,, P,, and Tr changed with water conditions or growth stages, showing that water conditions or growth stages had great effects on the correlations between two traits. Therefore, it is not always a good means to improve stomatal conductance, photosynthetic rate and transpiration rate and hence promote wheat yield by selecting stomatal density and size. [ Conclusion] The research could provide scientific references for revealing the roles of leaf stomatal traits in wheat breeding for drought resistance.展开更多
气孔是植物叶片与外界环境交换气体和水分的重要结构。针对现有气孔性状分析主要采用人工测量,过程繁琐、效率低下、容易出现人为误差的问题,本文采用YOLO(You only look once)深度学习模型完成了玉米叶片气孔的自动识别与自动测量工作...气孔是植物叶片与外界环境交换气体和水分的重要结构。针对现有气孔性状分析主要采用人工测量,过程繁琐、效率低下、容易出现人为误差的问题,本文采用YOLO(You only look once)深度学习模型完成了玉米叶片气孔的自动识别与自动测量工作。结合玉米叶片气孔数据集的特点,对YOLO深度学习模型进行了改进,有效地提高了气孔识别和测量的精确率。对YOLO深度学习模型中的预测端进行了优化,降低了误检率;同时,结合气孔特征对16倍、32倍下采样层进行简化,提高了识别效率。实验结果表明,改进后的YOLO深度学习模型在玉米叶片气孔数据集上识别精确率达到95%,参数测量的平均精确率达到90%以上。本文方法能够自动完成玉米叶片气孔的识别、计数与测量,解决了传统气孔分析方法的低效率问题,为农业科学家、植物学家开展植物气孔分析研究提供了技术支撑。展开更多
Preliminary research results indicated that the stomata is one important trait that can be used as an indicator of resistance to vascular streak dieback (VSD) disease. The influence of genotype and environment on th...Preliminary research results indicated that the stomata is one important trait that can be used as an indicator of resistance to vascular streak dieback (VSD) disease. The influence of genotype and environment on the stomatal characters is expected to provide information for specificlocations (habitats) suitable for planting cocoa in particular to avoid VSD attack. The research was conducted at KendengLembu, PTPNXII, East Java. Experimental design used a splitplot design testing: location (altitude) and genotype factors. The location factors, distinguished on the basis of the altitude, were labelled highlands and lowlands. The genotype factors consisted of three clones with different levels of resistance to VSD diseases: PA 191 (tolerant), BL 703 and GC 29 (susceptible). The cocoa clones observed were top grafted onto locally available rootstock seedling and planted in 2006-2007. The maintenance of the plants was conducted in accordance with the standards of cocoa cultivation in the PTPN XII. Parameters measured were leaf stomata traits at different positions of the leaf (tip, middle and base). Characters observed were the number of stomata, opening width of stomata, and diameter of the stomata. The results of the research showed that PA 191 in the lowlands had the lowest number, diameter and opening width of stomata. In contrast, GC 29 in the lowlands showed the highest number of stomata PA 191 and BL 703 in the highlands had a number, diameter and openings width of stomata that was relatively low compared with GC 29. However, the characters of the stomata (number, diameter and openings width of stomata) of the three genotypes in the highland showed a smaller value in each case than in the lowlands. The severity level of VSD attack was greater in the lowlands than in the highlands and PA 191 showed the lowest level of VSD attack at both altitudes.展开更多
基金Supported by the Key Projects in the National Science & Technology Pillar Program during 11th 5-year Plan Period(2006BAI06A11-11)~~
文摘[Objective]This study was to reveal the physiological and ecological mechanism of growth and development of test-tube seedlings.[Methods]Leaf stomata of test-tube seedlings of D.loddigesii and D.candidum at different growth and development stages were observed under scanning electron microscope,and their fluorescence induction response curve was assayed by using modulate fluorometer.[Results] At each growth and development stage,D.loddigesii test-tube seedling has a higher leaf stomatal density over D.candidum,while a lower stomata opening rate.Along with the growth,the size of stomata of both D.loddigesii and D.candidum did not change obviously,but their stoma density increased by 83% and 17.6% respectively.Leaf stomata opening rate reached the highest at the age of 240-day-old.Under the conditions of three settled light intensities,stomatal opening degree of D.loddigesii was increased by the intensity of illumination,the maximum aperture occurred at the light intensity of 54 μmol/m2·s.Given the same culture condition,both the maximum electron transport rate(14 μmol/m2·s)and light saturation point(318 μmol/m2·s)of D.loddigesii test-tube seedling are lower than that of D.candidum(20 μmol/m2·s,483 μmol/m2·s).Moreover,the potential photosynthetic capacity of D.loddigesii is relatively poor.[Conclusion]The photosynthetic rate varies among different species of Dendrobium,which could be attributed to their different stomatal characteristics.Usually,the light intensity of tissue culture chamber is set up as 27 μmol/(m2·s),where both D.loddigesii and D.candidum do not acquire an optimal state for their leaf stomatal opening.Considering the characteristics to select suitable culture condition,the stomatal aperture and photosynthetic rate could be enhanced,which can promote the growth and development of test-tube seedlings.
基金This work was supported by the Postgraduate Research Innovation Project of Chongqing(CYS23217)Chongqing Modern Agricultural Industry Technology System(CQMAITS202301)+1 种基金the Science Fund for Creative Research Groups of the Natural Science Foundation of Chongqing,China(cstc2021jcyj-cxttX0004)Natural Science Foundation of Chongqing(2023NSCQ-BHX0281).
文摘A dynamic plant architecture is the basis of plant adaptation to changing environments.Although many genes regulating leaf rolling have been identified,genes directly associated with water homeostasis are largely unknown.Here,we isolated a rice mutant,dynamic leaf rolling 1(dlr1),characterized by‘leaf unfolding in the morning-leaf rolling at noon-leaf unfolding in the evening’during a sunny day.Water content was decreased in rolled leaves and water sprayed on leaves caused reopening,indicating that in vivo water deficiency induced the leaf rolling.Map-based cloning and expression tests demonstrated that an A1400G single base mutation in Oryza sativa Polygalacturonase 1(OsPG1)/PHOTO-SENSITIVE LEAF ROLLING 1(PSL1)was responsible for the dynamic leaf rolling phenotype in the dlr1 mutant.OsPG1 encodes a polygalacturonase,one of the main enzymes that degrade demethylesterified homogalacturonans in plant cell walls.OsPG1 was constitutively expressed in various tissues and was enriched in stomata.Mutants of the OsPG1 gene exhibited defects in stomatal closure and decreased stomatal density,leading to reduced transpiration and excessive water loss under specific conditions,but had normal root development.Further analysis revealed that mutation of OsPG1 led to reduced pectinase activity in the leaves and increased demethylesterified homogalacturonans in guard cells.Our findings reveal a mechanism by which OsPG1 modulates water homeostasis to control dynamic leaf rolling,providing insights for plants to adapt to environmental variation.
基金funded by the National Natural Science Foundation of China(32072490)the National Key R&D Program of China(2021YFC2600100 and2021YFC2600101)the Agricultural Science and Technology Innovation Program,China。
文摘Mikania micrantha is a fast-growing global invasive weed species that causes severe damage to natural ecosystems and very large economic losses of forest and crop production.It has advantages in photosynthesis,including a similar net photosynthetic rate as C4 plants and a higher carbon fixation capacity.We used a combination of genomics and transcriptomics approaches to study the evolutionary mechanisms and circadian expression patterns of M.micrantha.In M.micrantha,16 positive selection genes focused on photoreaction and utilization of photoassimilates.In different tissues,98.1%of the genes associated with photoresponse had high expression in stems,and more than half of the genes of the C4 cycle had higher expression in stems than in leaves.In stomatal opening and closing,2 genes of carbonic anhydrase(CAs)had higher expression at 18:00 than at 8:00,and the slow anion channel 1(SLAC1)and high-leaf-temperature 1 kinase(HT1)genes were expressed at low levels at 18:00.In addition,genes associated with photosynthesis had higher expression levels at 7:00 and 17:00.We hypothesized that M.micrantha may undergo photosynthesis in the stem and flower organs and that some stomata of the leaves were opening at night by CO_(2)signals.In addition,its evolution may attenuate photoinhibition at high light intensities,and enhance more efficient of photosynthesis during low light intensity.And the tissue-specific photosynthetic types and different diurnal pattern of photosynthetic-related genes may contribute to its rapid colonization of new habitats of M.micrantha.
基金supported and funded by Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(KFU241897).
文摘Rice(Oryza sativa L.)is one of the most important cereal crops in the world.Bakanae disease is a significant rice disease widely distributed in rice-growing regions worldwide.Therefore,the present investigation aimed to assess the optimal concentrations of paclobutrazol(PBZ)as a treatment for rice grains(cv.Sakha 108)to control bakanae disease,also evaluating its impact on grain germination,seedling growth parameters as well as disease index.Paclobutrazol concentrations had no significant impact on seed germination,regardless of whether the seeds were incubated with Fusarium fujikuroi or not.Application of PBZ,either alone or in combination with fungal pathogens,negatively impacted the rice seedlings’height.Paclobutrazol at 25,50 and 100 mg/L,combined with the fungal pathogen positively impacted root length.Paclobutrazol at 3 and 6 mg/L mitigated the adverse impact on chlorophyll pigments content in infected seedlings.The highest proline contents were achieved by 100 mg/L PBZ alone or in combination with fungal pathogens.It has been observed that the application of PBZ,either alone or in combination with a fungal pathogen,leads to the enhancement of catalase,peroxidase,and polyphenol oxidase activities.The median lethal concentration of PBZ was 0.874 mg/L;applying low concentrations of paclobutrazol effectively increased the percentage of fungal growth suppression.Application of PBZ,at higher concentrations(50 and 100 mg/L),decreased infection percentage and disease severity index(DSI)significantly.These findings suggest that PBZ can be an effective treatment for controlling bakanae disease and enhancing resistance in rice plants.
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (NSFC Grant 90717003 to L-J Qu).
文摘1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyi-D- erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the role of the MEP pathway in plant development and metabolism, we carried out detailed analyses on a dxr mutant (GK_215C01) and two DXR transgenic co-suppression fines, OX-DXR-L2 and OX-DXR-L7. We found that the dxr mutant was albino and dwarf. It never bolted, had significantly reduced number of trichomes and most of the stomata could not close normally in the leaves. The two co-suppression lines produced more yellow inflorescences and albino sepals with no trichomes. The transcription levels of genes involved in tricbome initiation were found to be strongly affected, including GLABRA1, TRANSPARENT TESTA GLABROUS 1, TRIPTYCHON and SPINDLY, expression of which is regulated by gibberellic acids (GAs). Exogenous application of GA3 could partially rescue the dwarf phenotype and the trichome initiation of dxr, whereas exogenous application of abscisic acid (ABA) could rescue the stomata closure defect, suggesting that lower levels of both GA and ABA contribute to the phenotype in the dxr mutants. We further found that genes involved in the biosynthetic pathways of GA and ABA were coordinately regulated. These results indicate that disruption of the plastidial MEP pathway leads to biosynthetic deficiency of photosynthetic pigments, GAs and ABA, and thus the developmental abnormalities, and that the flux from the cytoplasmic mevalonate pathway is not sufficient to rescue the deficiency caused by the blockage of the plastidial MEP pathway. These results reveal a critical role for the MEP biosynthetic pathway in controlling the biosynthesis of isoprenoids.
文摘To observe the regulating effects of vascular endothelial growth factor (VEGF) and angiotensinⅡ (ANG II) on the frog’s pericardium, lymphatic stomata and angiogenesis so as to reveal their effects and mechanism on the mesothelial permeability, lymphatic stoma regulation and myocardial hypertrophy. Methods. VEGF and ANGⅡ were injected into the frog’s peritoneal cavity so as to examine the changes of the pericardial stromata by using transmission electron microscopy, scanning electron microscopy and computerized imaging analysis. Results. Scattered distributed pericardial stomata were found on the parietal pericardium of the frog with a few sinusoid mesothelial cells, whose blood supply was directly from the cardiac chambers flowing into the trabecular spaces of the myocardium (because there are no blood vessels in the myocardium of the frog). The average diameters of the pericardial stomata in VEGF and ANGⅡ groups were 1.50μ m and 1.79μ m respectively, which were much larger than those in the control group (0.72μ m, P Conclusions. VEGF and ANGⅡ could strongly regulate the pericardial stomata by increasing their numbers and openings with larger diameters and higher distribution density. They could also increase the sinusoid areas with the result of the higher permeability of the pericardium, which clearly indicated that VEGF and ANGⅡ could speed up the material transfer of the pericardial cavity and play an important role in preventing myocardial interstitial edema. Yet there was no strong evidence to show the angiogenesis in the myocardium.
文摘The development of the science of cytology and genetics, particularly on cell structure and function provided a breakthrough for breeders and allowed for early selection. Character of stomata density on some commodities was reported as important factor to determine the disease resistance. The research was done for getting information about the differences in the stomata characters influenced on the level of Vascular Streak dieback (VSD) resistance on cocoa. The research was conducted in the Laboratory of Genetics, Gadjah Mada University and leaves samples were conducted in Kendeng Lembu Gardens, PTPN XII. The research used a split plot design with three factors included the type of clones with different levels of VSD disease resistance (PA 191, BL 703 and GS 29), leaf position (top, middle and base) and leaf age (young and old). Stomata characters included number of stomata, stomata opening width, stomata wide and stomata diameter were observed. The results showed that the stomata characters in three cacao genotypes with different resistance levels indicated a difference in number of stomata, stomata size, stomata opening width, stomata wide and stomata diameter. Stomata number, stomata opening width and stomata diameter on PA 191 (resistance clone) were lower than the susceptible clones (BL 703 dan GS 29). The lowest of number and diameter stomata on the base position on the old leaves tissues. Number of stomata, stomata opening width and stomata diameter were estimated role in mechanism of VSD resistance and that were expected could be used as criteria selection to VSD resistance.
基金Supported by the Study Abroad Foundation of Shanxi Province,China( 2010048)CGIAR Challenge Program Project ( GCP) ( G7010.02.01-7)Special Foundation for Talent Introduction And Development of Shanxi Province,China ( 2011)
文摘[ Objective] The study aimed to discuss the relation of leaf stomatal traits to yield and drought resistance of wheat. [ Method] Using the DH population of wheat cultivar Hanxuanl0/Lumai14 as the test object, the relation of leaf stomatal density (SD), length (SL) and width ( SW), stomatal conductance (g,), photosynthetic rate ( Pn ), transpiration rate ( Tr) to grain yield per plant and index of drought resistance (IDR) on the 10th and 20t" day after anthesis under the conditions of drought stress and normal irrigation were discussed by the methods of correlation analysis and path analysis. [ Result] Under the two water conditions, the correlations of these stomatal traits with yield components and IDR were mostly not significant on the 10t" day after anthesis, but there were significantly positive correlations between thousand kernel weight (TKW) and these traits on the 20^th day after anthesis. Path analysis showed that g,, Pn and Tt, were main factors affecting yield per plant (YPP) and IDR, and they had stron- ger direct effects on YPP and IDR, while their indirect interaction was also strong. The direct effects of SD, SL and SW on YPP and IDR were small, as well as their indirect action among SD, SL and SW. On the other hand, the correlations between SD and SL were significant, and the correlations of SL with SW, gn, P, and Tt, were extremely significant on the 10th and 20th day after anthesis under the two water conditions. However, the correlations of SD and SL with g,, P,, and Tr changed with water conditions or growth stages, showing that water conditions or growth stages had great effects on the correlations between two traits. Therefore, it is not always a good means to improve stomatal conductance, photosynthetic rate and transpiration rate and hence promote wheat yield by selecting stomatal density and size. [ Conclusion] The research could provide scientific references for revealing the roles of leaf stomatal traits in wheat breeding for drought resistance.
文摘气孔是植物叶片与外界环境交换气体和水分的重要结构。针对现有气孔性状分析主要采用人工测量,过程繁琐、效率低下、容易出现人为误差的问题,本文采用YOLO(You only look once)深度学习模型完成了玉米叶片气孔的自动识别与自动测量工作。结合玉米叶片气孔数据集的特点,对YOLO深度学习模型进行了改进,有效地提高了气孔识别和测量的精确率。对YOLO深度学习模型中的预测端进行了优化,降低了误检率;同时,结合气孔特征对16倍、32倍下采样层进行简化,提高了识别效率。实验结果表明,改进后的YOLO深度学习模型在玉米叶片气孔数据集上识别精确率达到95%,参数测量的平均精确率达到90%以上。本文方法能够自动完成玉米叶片气孔的识别、计数与测量,解决了传统气孔分析方法的低效率问题,为农业科学家、植物学家开展植物气孔分析研究提供了技术支撑。
文摘Preliminary research results indicated that the stomata is one important trait that can be used as an indicator of resistance to vascular streak dieback (VSD) disease. The influence of genotype and environment on the stomatal characters is expected to provide information for specificlocations (habitats) suitable for planting cocoa in particular to avoid VSD attack. The research was conducted at KendengLembu, PTPNXII, East Java. Experimental design used a splitplot design testing: location (altitude) and genotype factors. The location factors, distinguished on the basis of the altitude, were labelled highlands and lowlands. The genotype factors consisted of three clones with different levels of resistance to VSD diseases: PA 191 (tolerant), BL 703 and GC 29 (susceptible). The cocoa clones observed were top grafted onto locally available rootstock seedling and planted in 2006-2007. The maintenance of the plants was conducted in accordance with the standards of cocoa cultivation in the PTPN XII. Parameters measured were leaf stomata traits at different positions of the leaf (tip, middle and base). Characters observed were the number of stomata, opening width of stomata, and diameter of the stomata. The results of the research showed that PA 191 in the lowlands had the lowest number, diameter and opening width of stomata. In contrast, GC 29 in the lowlands showed the highest number of stomata PA 191 and BL 703 in the highlands had a number, diameter and openings width of stomata that was relatively low compared with GC 29. However, the characters of the stomata (number, diameter and openings width of stomata) of the three genotypes in the highland showed a smaller value in each case than in the lowlands. The severity level of VSD attack was greater in the lowlands than in the highlands and PA 191 showed the lowest level of VSD attack at both altitudes.