Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in r...Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in real time during system operation.Therefore,energy storage is considered to be an effective way to ensure the real-time balance of system power.However,cost of energy storage is relatively expensive.As a solution,energy storage can be used to balance the system power in order to reduce system operating costs.Taking the high proportion of wind power systems as an example,the impact of the“supply side”low-carbon transformation on the economics and reliability of power system operation is explored.In order to solve the problem of power system operation configuration optimization under the background of“carbon neutrality,”this paper establishes a multi-objective programming model.展开更多
This paper proposes a theoretical study of a cold storage system in a CO2 (carbon dioxide) MT (medium temperature) plant for supermarkets application. The aim of this plant strategy is that in the daily hours the ...This paper proposes a theoretical study of a cold storage system in a CO2 (carbon dioxide) MT (medium temperature) plant for supermarkets application. The aim of this plant strategy is that in the daily hours the storage can export heat form the refrigerant outcoming the gas cooler/condenser whereas during the nightly hours it can be maintained cooled by this latter before its incoming into the evaporator. Besides, the storage can be used for reducing the energy peak consumption, permitting to size the plant on a lower energy target, and it can influence the choice of the optimisation logic of the plant controller, in this work a model for a MT CO2 transcritical/subcritical cycle, able to manage the transient due to the changes of loads and external conditions, is proposed to take into account the evolution with time in a fixed time step. A parametrical analysis has been conduced for understanding the optimal design of the plant. A seasonal analysis is considered too, for understanding the cold storage benefits in different periods of year.展开更多
Large underground caverns are commonly used in variety of applications. In many cases, because of the geomechanical limitations of dimensions and requirement of high volume, several parallel caverns are used. Plastic ...Large underground caverns are commonly used in variety of applications. In many cases, because of the geomechanical limitations of dimensions and requirement of high volume, several parallel caverns are used. Plastic zone integration requires a larger rock pillar distance of theses adjacent caverns while eco- nomic and access reasons require smaller distance. In lran many underground projects are located in West and South West, Asmari formation covers a large part of these regions. The stability of underground spaces that are constructed or will be constructed in this formation has been investigated. A proper cross section based on plastic analysis and a stability criterion has been proposed for each region. Finally, in each case, allowable rock pillar between adjacent caverns with similar dimension was determined with two methods (numerical analysis and fire service law). Results show that Fire Service Law uses a very con- servative safety factor and it was proposed to use a correction factor for allowable distance based on application of underground space.展开更多
In order to expand the study on flow instability of supercritical circulating fluidized bed(CFB) boiler,a new numerical computational model considering the heat storage of the tube wall metal was presented in this pap...In order to expand the study on flow instability of supercritical circulating fluidized bed(CFB) boiler,a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper.The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability.Based on the time-domain method,a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established.To verify the code,calculation results were respectively compared with data of commercial software.According to the comparisons,the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability.Based on the new program,the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method.When 1.2 times heat load disturbance was applied on the loop,results showed that the inlet flow rate,outlet flow rate and wall temperature fluctuated with time eventually remained at constant values,suggesting that the hydrodynamic flow was stable.The results also showed that in the case of considering the heat storage,the flow in the water wall is easier to return to stable state than without considering heat storage.展开更多
The fast-growing demand of computational fluid dynamics(CFD) application for computing resources stimulates the development of high performance computing(HPC) and meanwhile raises new requirements for the technolo...The fast-growing demand of computational fluid dynamics(CFD) application for computing resources stimulates the development of high performance computing(HPC) and meanwhile raises new requirements for the technology of parallel application performance monitor and analysis.In response to large-scale and long-time running for the application of CFD,online and scalable performance analysis technology is required to optimize the parallel programs as well as to improve their operational efficiency.As a result,this research implements a scalable infrastructure for online performance analysis on CFD application with homogeneous or heterogeneous system.The infrastructure is part of the parallel application performance monitor and analysis system(PAPMAS) and is composed of two modules which are scalable data transmission module and data storage module.The paper analyzes and elaborates this infrastructure in detail with respect to its design and implementation.Furthermore,some experiments are carried out to verify the rationality and high efficiency of this infrastructure that could be adopted to meet the practical needs.展开更多
文摘Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in real time during system operation.Therefore,energy storage is considered to be an effective way to ensure the real-time balance of system power.However,cost of energy storage is relatively expensive.As a solution,energy storage can be used to balance the system power in order to reduce system operating costs.Taking the high proportion of wind power systems as an example,the impact of the“supply side”low-carbon transformation on the economics and reliability of power system operation is explored.In order to solve the problem of power system operation configuration optimization under the background of“carbon neutrality,”this paper establishes a multi-objective programming model.
文摘This paper proposes a theoretical study of a cold storage system in a CO2 (carbon dioxide) MT (medium temperature) plant for supermarkets application. The aim of this plant strategy is that in the daily hours the storage can export heat form the refrigerant outcoming the gas cooler/condenser whereas during the nightly hours it can be maintained cooled by this latter before its incoming into the evaporator. Besides, the storage can be used for reducing the energy peak consumption, permitting to size the plant on a lower energy target, and it can influence the choice of the optimisation logic of the plant controller, in this work a model for a MT CO2 transcritical/subcritical cycle, able to manage the transient due to the changes of loads and external conditions, is proposed to take into account the evolution with time in a fixed time step. A parametrical analysis has been conduced for understanding the optimal design of the plant. A seasonal analysis is considered too, for understanding the cold storage benefits in different periods of year.
文摘Large underground caverns are commonly used in variety of applications. In many cases, because of the geomechanical limitations of dimensions and requirement of high volume, several parallel caverns are used. Plastic zone integration requires a larger rock pillar distance of theses adjacent caverns while eco- nomic and access reasons require smaller distance. In lran many underground projects are located in West and South West, Asmari formation covers a large part of these regions. The stability of underground spaces that are constructed or will be constructed in this formation has been investigated. A proper cross section based on plastic analysis and a stability criterion has been proposed for each region. Finally, in each case, allowable rock pillar between adjacent caverns with similar dimension was determined with two methods (numerical analysis and fire service law). Results show that Fire Service Law uses a very con- servative safety factor and it was proposed to use a correction factor for allowable distance based on application of underground space.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences,Grant No.XDA07030100the National Key Technology R&D Program of China during the 12th Five-Year Plan Period No.2015BAA03B01-01
文摘In order to expand the study on flow instability of supercritical circulating fluidized bed(CFB) boiler,a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper.The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability.Based on the time-domain method,a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established.To verify the code,calculation results were respectively compared with data of commercial software.According to the comparisons,the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability.Based on the new program,the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method.When 1.2 times heat load disturbance was applied on the loop,results showed that the inlet flow rate,outlet flow rate and wall temperature fluctuated with time eventually remained at constant values,suggesting that the hydrodynamic flow was stable.The results also showed that in the case of considering the heat storage,the flow in the water wall is easier to return to stable state than without considering heat storage.
基金Aeronautical Science Foundation of China(2010ZA04001)National Natural Science Foundation of China (61073013,90818024)
文摘The fast-growing demand of computational fluid dynamics(CFD) application for computing resources stimulates the development of high performance computing(HPC) and meanwhile raises new requirements for the technology of parallel application performance monitor and analysis.In response to large-scale and long-time running for the application of CFD,online and scalable performance analysis technology is required to optimize the parallel programs as well as to improve their operational efficiency.As a result,this research implements a scalable infrastructure for online performance analysis on CFD application with homogeneous or heterogeneous system.The infrastructure is part of the parallel application performance monitor and analysis system(PAPMAS) and is composed of two modules which are scalable data transmission module and data storage module.The paper analyzes and elaborates this infrastructure in detail with respect to its design and implementation.Furthermore,some experiments are carried out to verify the rationality and high efficiency of this infrastructure that could be adopted to meet the practical needs.