期刊文献+
共找到1,047篇文章
< 1 2 53 >
每页显示 20 50 100
A Special Issue:“Power Storage and Hydrogen Utilization Key Technologies”for Global Energy Interconnection
1
作者 Shengwei Mei Zhao Xu 《Global Energy Interconnection》 EI CSCD 2024年第5期I0002-I0003,共2页
High-quality development of renewable energy is the necessary path to sustainably meet the growing energy demand and achieve carbon neutrality.However,wind and photovoltaic power generation have high volatility,which ... High-quality development of renewable energy is the necessary path to sustainably meet the growing energy demand and achieve carbon neutrality.However,wind and photovoltaic power generation have high volatility,which brings challenges to the safety and stability of the power system and the requirement of power system flexibility.Power storage technology can effectively balance power supply and demand,and participate in system frequency and voltage regulation,improving the flexibility and reliability of the energy system.Hydrogen energy is a clean and efficient secondary energy source that can be directly applied in transportation,industry,and other fields.It can also be converted into stable chemical energy through electrolyzing water and being stored for a long period,which can help to improve the overall efficiency of the energy system.Therefore,the editorial department of Global Energy Interconnection has planned the special issue of“Power Storage and Hydrogen Utilization Key Technologies”. 展开更多
关键词 storage POWER utilization
下载PDF
Technical Perspective of Carbon Capture,Utilization,and Storage 被引量:15
2
作者 Qingyang Lin Xiao Zhang +2 位作者 Tao Wang Chenghang Zheng Xiang Gao 《Engineering》 SCIE EI CAS 2022年第7期27-32,共6页
Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels fo... Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels for energy,as well as industrial processes such as steel and cement production.Carbon capture,utilization,and storage(CCUS)is a sustainable technology promising in terms of reducing CO_(2) emissions that would otherwise contribute to climate change.From this perspective,the discussion on carbon capture focuses on chemical absorption technology,primarily due to its commercialization potential.The CO_(2) absorptive capacity and absorption rate of various chemical solvents have been summarized.The carbon utilization focuses on electrochemical conversion routes converting CO_(2) into potentially valuable chemicals which have received particular attention in recent years.The Faradaic conversion efficiencies for various CO_(2) reduction products are used to describe efficiency improvements.For carbon storage,successful deployment relies on a better understanding of fluid mechanics,geomechanics,and reactive transport,which are discussed in details. 展开更多
关键词 CCUS Carbon capture Carbon utilization Carbon storage Chemical absorption Electrochemical conversion storage mechanism
下载PDF
An Integrated Framework for Geothermal Energy Storage with CO_(2)Sequestration and Utilization 被引量:2
3
作者 Yueliang Liu Ting Hu +7 位作者 Zhenhua Rui Zheng Zhang Kai Du Tao Yang Birol Dindoruk Erling Halfdan Stenby Farshid Torabi Andrey Afanasyev 《Engineering》 SCIE EI CAS CSCD 2023年第11期121-130,共10页
Subsurface geothermal energy storage has greater potential than other energy storage strategies in terms of capacity scale and time duration.Carbon dioxide(CO_(2))is regarded as a potential medium for energy storage d... Subsurface geothermal energy storage has greater potential than other energy storage strategies in terms of capacity scale and time duration.Carbon dioxide(CO_(2))is regarded as a potential medium for energy storage due to its superior thermal properties.Moreover,the use of CO_(2)plumes for geothermal energy storage mitigates the greenhouse effect by storing CO_(2)in geological bodies.In this work,an integrated framework is proposed for synergistic geothermal energy storage and CO_(2)sequestration and utilization.Within this framework,CO_(2)is first injected into geothermal layers for energy accumulation.The resultant high-energy CO_(2)is then introduced into a target oil reservoir for CO_(2)utilization and geothermal energy storage.As a result,CO_(2)is sequestrated in the geological oil reservoir body.The results show that,as high-energy CO_(2)is injected,the average temperature of the whole target reservoir is greatly increased.With the assistance of geothermal energy,the geological utilization efficiency of CO_(2)is higher,resulting in a 10.1%increase in oil displacement efficiency.According to a storage-potential assessment of the simulated CO_(2)site,110 years after the CO_(2)injection,the utilization efficiency of the geological body will be as high as 91.2%,and the final injection quantity of the CO_(2)in the site will be as high as 9.529×10^(8)t.After 1000 years sequestration,the supercritical phase dominates in CO_(2)sequestration,followed by the liquid phase and then the mineralized phase.In addition,CO_(2)sequestration accounting for dissolution trapping increases significantly due to the presence of residual oil.More importantly,CO_(2)exhibits excellent performance in storing geothermal energy on a large scale;for example,the total energy stored in the studied geological body can provide the yearly energy supply for over 3.5×10^(7) normal households.Application of this integrated approach holds great significance for large-scale geothermal energy storage and the achievement of carbon neutrality. 展开更多
关键词 Geothermal energy storage CO_(2)sequestration Carbon neutrality LARGE-SCALE CO_(2)utilization
下载PDF
“Extreme utilization” theory and practice in gas storages with complex geological conditions 被引量:1
4
作者 MA Xinhua ZHENG Dewen +1 位作者 DING Guosheng WANG Jieming 《Petroleum Exploration and Development》 SCIE 2023年第2期419-432,共14页
Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of ... Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of gas-water flowing law of multi-cycle relative permeability hysteresis and differential utilization in zones, the extreme utilization theory targeting at the maximum amount of stored gas, maximum injection-production capacity and maximum efficiency in space utilization is proposed to support the three-in-one evaluation method of the maximum pressure-bearing capacity of geological body, maximum well production capacity and maximum peak shaving capacity of storage space. This study realizes the full potential of gas storage(storage capacity) at maximum pressure, maximum formation-wellbore coordinate production, optimum well spacing density match with finite-time unsteady flow, and peaking shaving capacity at minimum pressure, achieving perfect balance between security and capacity. Operation in gas storages, such as Hutubi in Xinjiang, Xiangguosi in Xinan, and Shuang6 in Liaohe, proves that extreme utilization theory has promoted high quality development of gas storages in China. 展开更多
关键词 underground gas storage gas-storage geological body maximum pressure-bearing maximum well production capacity maximum peak shaving capacity extreme utilization theory multi-cycle relative permeability hysteresis
下载PDF
Effects of CH_(4)/CO_(2) multi-component gas on components and properties of tight oil during CO_(2) utilization and storage: Physical experiment and composition numerical simulation
5
作者 Zhi-Hao Jia Ren-Yi Cao +5 位作者 Bin-Yu Wang Lin-Song Cheng Jin-Chong Zhou Bao-Biao Pu Fu-Guo Yin Ming Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3478-3487,共10页
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe... An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff. 展开更多
关键词 Multi-component gas Properties and components Core displacement experiment Nano-confinement numerical simulation CO_(2)utilization and storage
下载PDF
Preface to Special Issue: CO_2 capture storage and utilization
6
作者 Yanqiang Huang Qiang Wang Jinlong Gong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期819-820,共2页
Reducing the anthropogenic COemissions from fossil resource combustion and human activities has become one of the major challenges we are facing today.Beyond those practical applications for the utilization of CO,such... Reducing the anthropogenic COemissions from fossil resource combustion and human activities has become one of the major challenges we are facing today.Beyond those practical applications for the utilization of CO,such as the synthesis of salicylic acid,methanol,urea,NaHCO-NaCOchemicals and recently developed polycarbonate synthesis,scientists are still seeking new materials and technologies for efficient capture, 展开更多
关键词 CO2 capture storage and utilization Preface to Special Issue
下载PDF
Navigating the hydrogen prospect:A comprehensive review of sustainable source-based production technologies,transport solutions,advanced storage mechanisms,and CCUS integration
7
作者 Sehar Tasleem Chandra Sekhar Bongu +1 位作者 Mohan Raj Krishnan Edreese Housni Alsharaeh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期166-215,I0005,共51页
The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable... The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable sources,storage,and transport.The challenges,advantages,and uses of H_(2) energy are included at length.Moreover,apart from the sustainable production approaches,the approaches and current developments for combating the carbon dioxide(CO_(2))emissions from existing H_(2) production facilities are highlighted in terms of ca rbon capture,utilization,and storage(CCUS).Concisely,the review discusses current material and recent technological adva ncements in developing pilot projects and large-scale establishments for viable and rapidly emerging sou rce-ba sed H_(2) productio n.Moreover,the review also aims to provide an in-depthdiscussion and explore current developments based on the advantages of H_(2) energy in terms of its utilization,based on its high energy density,and its ability to be used as a feedstock and fuel.On the other hand,the challenges of H_(2) are also elabo rated.Next,the role of CCUS in a carbon-neutral economy and value chain for minimization of emissions from existing facilities is thoroughly deliberated,and the recent commercial-scale implementation of CCUS technologies is highlighted.Extending the utilization and recycling of captured CO_(2) emissions along with H_(2) to produce e-fuels in terms of current advances is detailed in this review.Fu rthermore,the most applicable,efficient,a nd develo ping approaches are discussed for physical and chemical H_(2) storage,considering recent la rge-scale implementations of liquid carriers and liquid organic hydrogen carriers as storage options.Lastly,the review elaborates on recent insights into advances in H_(2) transport infrastructure,including compressed and liquid H_(2) delivery via roads,ships,pipelines,and flight cargo.The review gives precise insights into the recent scenario through an elaborated conclusion of each discussion topic separately and a discussion of future perspectives.The current review will help researchers to fully understand the ongoing research advancements and challenges in the H_(2) value chain for formulating new solutions for sustainable H_(2) production,alo ng with focusing on suitable approaches for its storage and tra nsport to make the production and utilization of H_(2) applicable on a large scale. 展开更多
关键词 Source-based hydrogen Hydrogen utilization Carbon capture E-fuels Hydrogen storage Transport infrastructure
下载PDF
Enhanced properties of stone coal-based composite phase change materials for thermal energy storage
8
作者 Baoshan Xie Huan Ma +1 位作者 Chuanchang Li Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期206-215,共10页
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential... Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals. 展开更多
关键词 thermal energy storage phase change material stone coal vanadium extraction secondary utilization
下载PDF
CO_(2)storage with enhanced gas recovery(CSEGR):A review of experimental and numerical studies 被引量:10
9
作者 Shu-Yang Liu Bo Ren +5 位作者 Hang-Yu Li Yong-Zhi Yang Zhi-Qiang Wang Bin Wang Jian-Chun Xu Ramesh Agarwal 《Petroleum Science》 SCIE CAS CSCD 2022年第2期594-607,共14页
CO_(2)emission mitigation is one of the most critical research frontiers.As a promising option of carbon capture,utilization and storage(CCUS),CO_(2)storage with enhanced gas recovery(CSEGR)can reduce CO_(2)emission b... CO_(2)emission mitigation is one of the most critical research frontiers.As a promising option of carbon capture,utilization and storage(CCUS),CO_(2)storage with enhanced gas recovery(CSEGR)can reduce CO_(2)emission by sequestrating it into gas reservoirs and simultaneously enhance natural gas production.Over the past decades,the displacement behaviour of CO_(2)—natural gas has been extensively studied and demonstrated to play a key role on both CO_(2)geologic storage and gas recovery performance.This work thoroughly and critically reviews the experimental and numerical simulation studies of CO_(2)displacing natural gas,along with both CSEGR research and demonstration projects at various scales.The physical property difference between CO_(2)and natural gas,especially density and viscosity,lays the foundation of CSEGR.Previous experiments on displacement behaviour and dispersion characteristics of CO_(2)/natural gas revealed the fundamental mixing characteristics in porous media,which is one key factor of gas recovery efficiency and warrants further study.Preliminary numerical simulations demonstrated that it is technically and economically feasible to apply CSEGR in depleted gas reservoirs.However,CO_(2)preferential flow pathways are easy to form(due to reservoir heterogeneity)and thus adversely compromise CSEGR performance.This preferential flow can be slowed down by connate or injected water.Additionally,the optimization of CO_(2)injection strategies is essential for improving gas recovery and CO_(2)storage,which needs further study.The successful K12—B pilot project provides insightful field-scale knowledge and experience,which paves a good foundation for commercial application.More experiments,simulations,research and demonstration projects are needed to facilitate the maturation of the CSEGR technology. 展开更多
关键词 Carbon capture utilization and storage(CCUS) Enhanced gas recovery CO_(2)geologic storage Miscible displacement DISPERSION
下载PDF
Research on Storage Capacity of Compressed Air Pumped Hydro Energy Storage Equipment 被引量:4
10
作者 Jingtian Bi Tong Jiang +1 位作者 Weili Chen Xian Ma 《Energy and Power Engineering》 2013年第4期26-30,共5页
Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compres... Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compressed air expanses pushing water to drive the hydro turbine for power generation. The novel storage equipment saves natural gas resources, reduces carbon emission, and improves the controllability and reliability. The principle of compressed air pumped hydro energy storage is introduced and its mathematical model is built. The storage and generation process of the novel equipment is analyzed using the model. The calculation formula of the storage power is deduced in theory in different situations of isothermal and adiabatic compression. The optimal storage scheme is given when the capacity and withstand pressure of the vessel is definitive, and the max available capacity and the equipment utilization efficiency evaluation of the scheme is given. 展开更多
关键词 Power storage Compressed Air Energy storage HYDRAULIC EQUIPMENT Optimal Operation ISOTHERMAL PROCESS ADIABATIC PROCESS EQUIPMENT utilization Efficiency
下载PDF
Development and Utilization of Solar Energy Resources and Meteorological Services in Hami City
11
作者 Juan WANG 《Meteorological and Environmental Research》 CAS 2020年第1期19-20,23,共3页
Hami City is rich in light resources and is a key area for the development of photovoltaic power generation industry in Xinjiang.In the past 11 years,annual sunshine duration in Hami tended to increase,but annual sola... Hami City is rich in light resources and is a key area for the development of photovoltaic power generation industry in Xinjiang.In the past 11 years,annual sunshine duration in Hami tended to increase,but annual solar radiation decreased.Sunshine duration and solar radiation were more in summer and less in winter.They were the most in May and the least in December.Meteorological departments should strengthen the observation of illumination and other elements,do a good job in the assessment of solar energy resources and other professional services,and provide technical support for the development and utilization of light energy resources. 展开更多
关键词 SUNSHINE duration SOLAR RADIATION Development utilization METEOROLOGICAL service
下载PDF
Simulation of pore space production law and capacity expansion mechanism of underground gas storage
12
作者 LIU Tao LI Yiqiang +7 位作者 DING Guosheng WANG Zhengmao SHI Lei LIU Zheyu TANG Xiang CAO Han CAO Jinxin HUANG Youqing 《Petroleum Exploration and Development》 CSCD 2022年第6期1423-1429,共7页
One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carrie... One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carried out using one-dimensional long core and large two-dimensional flat physical models to find out the effects of reservoir physical properties and injection-production balance time on reservoir pore utilization efficiency,effective reservoir capacity formation and capacity-reaching cycle.The results show that reservoir physical properties and formation water saturation are the main factors affecting the construction and operation of gas-reservoir type underground gas storage.During the construction and operation of gas-reservoir type gas storage,the reservoir space can be divided into three types of working zones:high efficiency,low efficiency and ineffective ones.The higher the reservoir permeability,the higher the pore utilization efficiency is,the smaller the ineffective working zone is,or there is no ineffective working zone;the smaller the loss of injected gas is,and the higher the utilization rate of pores is.The better the reservoir physical properties,the larger the reservoir space and the larger the final gas storage capacity is.The higher the water saturation of the reservoir,the more the gas loss during gas storage capacity building and operation is.Optimizing injection-production regime to discharge water and reduce water saturation is an effective way to reduce gas loss in gas storage.In the process of multiple cycles of injection and production,there is a reasonable injection-production balance time,further extending the injection-production balance period after reaching the reasonable time has little contribution to the expansion of gas storage capacity. 展开更多
关键词 gas reservoir-type underground gas storage multi-cycle injection and production injection-production equilibrium time pore utilization efficiency effective gas storage volume
下载PDF
Performance Analysis of Multi-Energy Hybrid System Based on Molten Salt Energy Storage
13
作者 Xin Xu Lian Zhang 《Energy Engineering》 EI 2021年第6期1905-1920,共16页
This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage med... This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage medium are some of the most important factors that affect overall efficiency of the system,because some renewable energy sources such as solar and wind are unpredictable.A thermal storage system is therefore necessary to store energy for continuous usage.Based on the form of storage or the mode of system connection,heat exchangers of a thermal storage system can produce different temperature ranges of heat transfer fluid to realize energy cascade utilization.Founded upon the review,a small hybrid energy system with a molten-salt energy storage system is proposed to solve the problems of heating,cooling,and electricity consumption of a 1000 m2 training hall at school.The system uses molten-salt storage tank,water tank and steam generator to change the temperature of heat transfer fluid,in order to realize thermal energy cascade utilization.Compared to the existing heating and cooling system,the proposed system needs more renewable energy and less municipal energy to achieve the same results according to simulation analysis.Furthermore,by improving the original heating and cooling system,PMV has been improved.The comprehensive efficiency of solar energy utilization has been increased to 83%. 展开更多
关键词 Solar thermal power thermal energy storage storage medium energy cascade utilization
下载PDF
Facile and controllable synthesis of BaCO_3 crystals superstructures using a CO_2-storage material
14
作者 Feng Sha Bo Guo +5 位作者 Jing Zhao Fei Zhang Xianshu Qiao Liang Ma Chang Liu Jianbin Zhang 《Green Energy & Environment》 SCIE 2017年第4期401-411,共11页
We here report a new CO_2 capture and storage method that converts CO_2 into a novel alkyl carbonate salt, denoted as CO_2 SM, by a system consisting of equimolar 1,4-butanediol(BDO) and 1,2-ethylenediamine(EDA). This... We here report a new CO_2 capture and storage method that converts CO_2 into a novel alkyl carbonate salt, denoted as CO_2 SM, by a system consisting of equimolar 1,4-butanediol(BDO) and 1,2-ethylenediamine(EDA). This novel CO_2 SM was then used to prepare BaCO_3 crystals through a simple and fast hydrothermal synthesis under mild conditions. The CO_2 SM was both the source of CO_2 and the modifier to regulate the nucleation and growth of BaCO_3 crystals. The morphology of the BaCO_3 crystals could be tuned from rod to shuttle by adjusting the key influencing factors, including CO_2 SM concentration, mineralization temperature, and mineralization time. A possible mechanism for the synthesis of BaCO_3 crystals from the CO_2 SM was also presented. After the BaCO_3 crystals were isolated, the filtrate of the hydrothermal reaction could be recycled to again absorb CO_2 and prepare BaCO_3 crystals of the same polymorph. This novel approach appears promising for preparing well-formed metal carbonates. 展开更多
关键词 BACO3 CO2-storage material Morphology control CO2 capture and utilization
下载PDF
Review of data security within energy blockchain:A comprehensive analysis of storage,management,and utilization
15
作者 Yunhua He Zhihao Zhou +4 位作者 Yan Pan Fahui Chong Bin Wu Ke Xiao Hong Li 《High-Confidence Computing》 EI 2024年第3期82-102,共21页
Energy systems are currently undergoing a transformation towards new paradigms characterized by decarbonization,decentralization,democratization,and digitalization.In this evolving context,energy blockchain,aiming to ... Energy systems are currently undergoing a transformation towards new paradigms characterized by decarbonization,decentralization,democratization,and digitalization.In this evolving context,energy blockchain,aiming to enhance efficiency,transparency,and security,emerges as an integrated technological solution designed to address the diverse challenges in this field.Data security is essential for the reliable and efficient functioning of energy blockchain.The pressing need to address challenges related to secure data storage,effective data management,and efficient data utilization is increasingly vital.This paper offers a comprehensive survey of academic discourse on energy blockchain data security over the past five years,adopting an all-encompassing perspective that spans data storage,management,and utilization.Our work systematically evaluates and contrasts the strengths and weaknesses of various research methodologies.Additionally,this paper proposes an integrated hierarchical on-chain and off-chain security energy blockchain architecture,specifically designed to meet the complex security requirements of multi-blockchain business environments.Concludingly,this paper identifies key directions for future research,particularly in advancing the integration of storage,management,and utilization of energy blockchain data security. 展开更多
关键词 Energy blockchain Data security storage MANAGEMENT utilization
原文传递
Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries
16
作者 Jun Jiang Tong Guo +10 位作者 Wuxin Bai Mingliang Liu Shujun Liu Zhijie Qi Jingwen Sun Shugang Pan Aleksandr L.Vasiliev Zhiyuan Ma Xin Wang Junwu Zhu Yongsheng Fu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期237-243,共7页
Popularization of lithium-sulfur batteries(LSBs) is still hindered by shuttle effect and volume expansion.Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via empl... Popularization of lithium-sulfur batteries(LSBs) is still hindered by shuttle effect and volume expansion.Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via employing 100% space utilization host material of cobalt loaded carbon nanoparticles derived from ZIF-67. The modular dispersed storage of sulfur not only greatly increases the proportion of active sulfur,but also inhibits the occurrence of volume expansion. Meanwhile, 100% space utilization host material can greatly improve the conductivity of the cathode, provide a larger electrolyte wetting interface and effectively suppress the shuttle effect. Moreover, loaded cobalt particles have high catalytic activity for electrochemical reaction and can effectively improve the redox kinetics. The cell with new cathode host material carbonized at 650 ℃(ZIF-67(650 ℃)) exhibits superior rate performance and can maintain a high specific capacity of 950 m Ah/g after 100 cycles at 0.2 C, showing a good cycle stability. 展开更多
关键词 Modularized sulfur storage Space utilization Cathode host material ZIF-67 Lithium-sulfur batteries
原文传递
Looping of Hybrid PV/Wind Turbine Power Plants by a Compressed Air Storage System and Creation of Artificial Wind to Ensure the Permanent Availability of Energy in the Tropical Zones
17
作者 Bello Pierre Ngoussandou Hamandjoda Oumarou Noel Djongyang 《Journal of Energy and Power Engineering》 2018年第2期57-65,共9页
In general, the energy storage in facilities to intermittent sources is provided by a battery of accumulators. Having found that the duration of life of chemical accumulators is strongly shortened in the northern regi... In general, the energy storage in facilities to intermittent sources is provided by a battery of accumulators. Having found that the duration of life of chemical accumulators is strongly shortened in the northern regions of Cameroon and that this has a considerable impact on the operating costs and the reliability of power plants to intermittent sources, this work proposes to find an alternative to these chemical accumulators rendered vulnerable by the high temperatures. It reviews all energy storage techniques and makes a choice (the CAES (compressed air energy storage)) based on thermal robustness. It proposes a new technique of restitution of the energy by producing an artificial wind from the compressed air. The feedback loop thus obtained by the compressor-tank-wind subsystem is studied from a series of manipulations and its efficiency is determined. To automate the operation of this system, a controller is required. The operating logic of the controller is provided in function of the precise states of the load, the tank and the natural sources. 展开更多
关键词 Battery duration life compressed air energy storage artificial wind thermal robustness.
下载PDF
Bipolar membrane electrodialysis integrated with in-situ CO_(2)absorption for simulated seawater concentrate utilization,carbon storage and production of sodium carbonate
18
作者 Jingtao Bi Tianyi Chen +5 位作者 Yue Xie Ruochen Shen Bin Li Mengmeng Sun Xiaofu Guo Yingying Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第8期21-32,共12页
In the context of carbon capture,utilization,and storage,the high-value utilization of carbon storage presents a significant challenge.To address this challenge,this study employed the bipolar membrane electrodialysis... In the context of carbon capture,utilization,and storage,the high-value utilization of carbon storage presents a significant challenge.To address this challenge,this study employed the bipolar membrane electrodialysis integrated with carbon utilization technology to prepare Na_(2)CO_(3)products using simulated seawater concentrate,achieving simultaneous saline wastewater utilization,carbon storage and high-value production of Na_(2)CO_(3).The effects of various factors,including concentration of simulated seawater concentrate,current density,CO_(2)aeration rate,and circulating flow rate of alkali chamber,on the quality of Na_(2)CO_(3)product,carbon sequestration rate,and energy consumption were investigated.Under the optimal condition,the CO_(3)^(2-)concentration in the alkaline chamber reached a maximum of 0.817 mol/L with 98 mol%purity.The resulting carbon fixation rate was 70.50%,with energy consumption for carbon sequestration and product production of 5.7 k Whr/m^(3)CO_(2)and1237.8 k Whr/ton Na_(2)CO_(3),respectively.This coupling design provides a triple-win outcome promoting waste reduction and efficient utilization of resources. 展开更多
关键词 Bipolar membrane electrodialysis(BMED) Carbon capture utilization and storage(CCUS) Seawater concentrate Sodium carbonate
原文传递
新型超声快速处理活检标本保存不同年限对DNA质量的影响
19
作者 石晨曦 朱卫东 +3 位作者 李三恩 李秀明 师逢 丁亚云 《中国组织工程研究》 CAS 北大核心 2025年第13期2655-2660,共6页
背景:新型超声组织处理技术越来越多地被用来进行分子生物学分析,研究新型超声处理不同存储年限组织DNA的质量,对进一步分子检测的标本质控具有重要意义。目的:探讨新型超声处理活检标本存储不同年限对DNA质量的影响,以期为分子检测探... 背景:新型超声组织处理技术越来越多地被用来进行分子生物学分析,研究新型超声处理不同存储年限组织DNA的质量,对进一步分子检测的标本质控具有重要意义。目的:探讨新型超声处理活检标本存储不同年限对DNA质量的影响,以期为分子检测探索最佳的标本存储时间。方法:收集40例乳腺穿刺小活检组织,采用超声技术制作石蜡标本,按照存储年限分为4组:<1年组、1-3年组、>3-5年组及>5年组,每组10例,对石蜡标本进行切片,每张切片厚3μm,切片10-15张,提取DNA后通过Nanophotometer N60超微量分光光度计和Qubit 4.0荧光计检测DNA的质量浓度,记录A_(260)/A_(280)比值判定DNA的纯度,利用全自动毛细管电泳核酸分析仪(Qsep 100)检测DNA片段完整性,以评估DNA片段的质量。结果与结论:4组样本A_(260)/A_(280)均值在1.8-2.0之间,达到纯度要求,无明显差异。4组样本的DNA质量浓度(Qubit浓度)均值分别为30.39,14.33,2.52,1.95 ng/μL;DNA的平均N/Q比值分别为6.48,14.18,24.56,29.86;DNA质量数均值分别为5.64,1.76,1.24,0.80;大片段占比均值分别为56.08%,17.72%,12.68%,7.90%。PCR检测内控基因Ct均值分别为15.32,17.09,18.39,21.24。与<1年组相比,其余3组DNA浓度显著降低,N/Q比值显著增加,DNA质量数和大片段占比均值显著降低,Ct值升高,差异有显著性意义(P<0.05)。实验结果表明,对于新型超声处理活检标本,应优先选择存储<1年的样本进行日常分子检测,储存3年内的样本可满足二代测序等检测要求,5年内样本仅可尝试进行PCR等检测,存储超过5年的样本不建议进行后续分子检测。 展开更多
关键词 超声处理 存储年限 DNA质量 片段完整性 降解程度 二代测序
下载PDF
China's policy framework for carbon capture,utilization and storage:Review,analysis,and outlook 被引量:2
20
作者 Qiao MA Shan WANG +6 位作者 Yan FU Wenlong ZHOU Mingwei SHI Xueting PENG Haodong LV Weichen ZHAO Xian ZHANG 《Frontiers in Energy》 SCIE CSCD 2023年第3期400-411,共12页
Carbon capture,utilization,and storage(CCUS)is estimated to contribute substantial CO_(2)emission reduction to carbon neutrality in China.There is yet a large gap between such enormous demand and the current capacity,... Carbon capture,utilization,and storage(CCUS)is estimated to contribute substantial CO_(2)emission reduction to carbon neutrality in China.There is yet a large gap between such enormous demand and the current capacity,and thus a sound enabling environment with sufficient policy support is imperative for CCUS development.This study reviewed 59 CCUS-related policy documents issued by the Chinese government as of July 2022,and found that a supporting policy framework for CCUS is taking embryonic form in China.More than ten departments of the central government have involved CCUS in their policies,of which the State Council,the National Development and Reform Commission(NDRC),the Ministry of Science and Technology(MOST),and the Ministry of Ecological Environment(MEE)have given the greatest attention with different focuses.Specific policy terms are further analyzed following the method of content analysis and categorized into supply-,environment-and demand-type policies.The results indicate that supply-type policies are unbalanced in policy objectives,as policy terms on technology research and demonstration greatly outnumber those on other objectives,and the attention to weak links and industrial sectors is far from sufficient.Environment-type policies,especially legislations,standards,and incentives,are inadequate in pertinence and operability.Demand-type policies are absent in the current policy system but is essential to drive the demand for the CCUS technology in domestic and foreign markets.To meet the reduction demand of China's carbon neutral goal,policies need to be tailored according to needs of each specific technology and implemented in an orderly manner with well-balanced use on multiple objectives. 展开更多
关键词 carbon capture utilization and storage(CCUS) POLICY content analysis China
原文传递
上一页 1 2 53 下一页 到第
使用帮助 返回顶部