Hydrogen spillover mechanism of metal-supported covalent-organic frameworks COF-105 is investigated by means of the density functional theory, and the effects of metal catalysts M_4(Pt_4, Pd_4, and Ni_4) on the whol...Hydrogen spillover mechanism of metal-supported covalent-organic frameworks COF-105 is investigated by means of the density functional theory, and the effects of metal catalysts M_4(Pt_4, Pd_4, and Ni_4) on the whole spillover process are systematically analyzed. These three metal catalysts exhibit several similar phenomena:(i) they prefer to deposit on the tetra(_4-dihydroxyborylphenyl) silane(TBPS) cluster with surface-contacted configuration;(ii) only the H atoms at the bridge site can migrate to 2,3,6,7,10,11-hexahydroxy triphenylene(HHTP) and TBPS surfaces, and the migration process is an endothermic reaction and not stable;(iii) the introduction of M_4 catalyst can greatly reduce the diffusion energy barrier of H atoms, which makes it easier for the H atoms to diffuse on the substrate surface. Differently, all of the H2 molecules spontaneously dissociate into H atoms onto Pt_4 and Pd_4clusters. However, the adsorbed H2 molecules on Ni_4 cluster show two types of adsorption states: one activated state with stretched H–H bond length of 0.88 ?A via the Kubas interaction and five dissociated states with separated hydrogen atoms. Among all the M_4 catalysts, the orders of the binding energy of M_4 deposited on the substrate and average chemisorption energy per H2 molecule are Pt_4〉Ni_4〉Pd_4. On the contrary, the orders of the migration and diffusion barriers of H atoms are Pt_4展开更多
Metal sulfides as a feasible candidate with high specific capacitance for supercapacitors suffer from sluggish ion/electron transport kinetics and rapid capacitance fading. Herein, we demonstrate a method to fabricate...Metal sulfides as a feasible candidate with high specific capacitance for supercapacitors suffer from sluggish ion/electron transport kinetics and rapid capacitance fading. Herein, we demonstrate a method to fabricate a composite of reduced graphene oxide(rGO) with hollow Co9S8 derived from metal organic framework(MOF). Due to the combined highly conductive rGO substrates and hollow shell, the prepared r GO/Co9S8 composite exhibits a high specific capacitance of 575.9 F/g at 2 A/g and 92.0% capacitance retention after 9000 cycles. Its excellent electrochemical performance provides great promise for application, and this versatile method can be extended to prepare other similar nanocomposite.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304079,11304140,11404094,and 11504088)the China National Scholarship Foundation(Grant No.201508410255)+4 种基金the Foundation for Young Core Teachers of Higher Education Institutions of Henan Province of Chinathe Foundation for Young Core Teachers of Henan University of Technology in Chinathe Korea Institute of Science and Technology(KIST)Institutional Program(Grant No.2E26291)Flag Program(Grant No.2E26300)the Research Grants of NRF funded by the National Research Foundation under the Ministry of Science,ICT&Future,Korea(Grant No.NRF-2015H1D3A1036078)
文摘Hydrogen spillover mechanism of metal-supported covalent-organic frameworks COF-105 is investigated by means of the density functional theory, and the effects of metal catalysts M_4(Pt_4, Pd_4, and Ni_4) on the whole spillover process are systematically analyzed. These three metal catalysts exhibit several similar phenomena:(i) they prefer to deposit on the tetra(_4-dihydroxyborylphenyl) silane(TBPS) cluster with surface-contacted configuration;(ii) only the H atoms at the bridge site can migrate to 2,3,6,7,10,11-hexahydroxy triphenylene(HHTP) and TBPS surfaces, and the migration process is an endothermic reaction and not stable;(iii) the introduction of M_4 catalyst can greatly reduce the diffusion energy barrier of H atoms, which makes it easier for the H atoms to diffuse on the substrate surface. Differently, all of the H2 molecules spontaneously dissociate into H atoms onto Pt_4 and Pd_4clusters. However, the adsorbed H2 molecules on Ni_4 cluster show two types of adsorption states: one activated state with stretched H–H bond length of 0.88 ?A via the Kubas interaction and five dissociated states with separated hydrogen atoms. Among all the M_4 catalysts, the orders of the binding energy of M_4 deposited on the substrate and average chemisorption energy per H2 molecule are Pt_4〉Ni_4〉Pd_4. On the contrary, the orders of the migration and diffusion barriers of H atoms are Pt_4
基金Financial support from National Key Project (No. 2017YFF0210703)Distinguished Young Scientists Program of the National Natural Science Foundation of China (Nos. 51425301, 21374021, 51673096 and U1601214)
文摘Metal sulfides as a feasible candidate with high specific capacitance for supercapacitors suffer from sluggish ion/electron transport kinetics and rapid capacitance fading. Herein, we demonstrate a method to fabricate a composite of reduced graphene oxide(rGO) with hollow Co9S8 derived from metal organic framework(MOF). Due to the combined highly conductive rGO substrates and hollow shell, the prepared r GO/Co9S8 composite exhibits a high specific capacitance of 575.9 F/g at 2 A/g and 92.0% capacitance retention after 9000 cycles. Its excellent electrochemical performance provides great promise for application, and this versatile method can be extended to prepare other similar nanocomposite.