Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations...Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.展开更多
In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order...In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation,and speed up the process of electric-hydrogen-electricity conversion.This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit,and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen storage unit.These models are of great significance for studying and optimizing gas storage technology.Through these models,the performance of gas storage units can be better understood and improved.These studies are very helpful for improving energy storage efficiency and sustainable development.The factors affecting the charge-discharge efficiency of hydrogen storage units are analyzed.By integrating the models of each unit and considering the capacity degradation of the hydrogen storage system,we can construct an efficiency model for a large hydrogen storage system and power conversion system.In addition,the simulation models of the hydrogen production system and hydrogen consumption system were established in MATLAB/Simulink.The accuracy and effectiveness of the simulation model were proved by comparing the output voltage variation curve of the simulation with the polarization curve of the typical hydrogen production system and hydrogen consumption system.The results show that the charge-discharge efficiency of the hydrogen storage unit increases with the increase of operating temperature,and H2 and O2 partial voltage have little influence on the charge-discharge efficiency.In the process of power conversion system converter rectification operation,its efficiency decreases with the increase of temperature,while in the process of inverter operation,power conversion system efficiency increases with the increase of temperature.Combined with the efficiency of each hydrogen storage unit and power conversion system converter,the upper limit of the capacity loss of different hydrogen storage units was set.The optimal charge-discharge efficiency of the hydrogen storage system was obtained by using the Cplex solver at 36.46%and 66.34%.展开更多
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ...To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.展开更多
Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink...Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.展开更多
Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system e...Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system efficiency and manage energy costs.This paper investigates renewable and clean storage systems,specifically examining the storage of electricity generated from renewable sources using hydropower plants and hydrogen,both of which are highly efficient and promising for future energy production and storage.The study utilizes extensive literature data to analyze the impact of various parameters on the cost per kWh of electricity production in hybrid renewable systems incorporating hydropower and hydrogen storage plants.Results indicate that these hybrid systems can store electricity efficiently and cost-effectively,with production costs ranging from 0.126 to 0.3$/kWh for renewablehydropower systems and 0.118 to 0.42$/kWh for renewable-hydrogen systems,with expected cost reductions over the next decade due to technological advancements and increased market adoption.The novelty of this study lies in its comprehensive comparison of hybrid renewable systems integrating hydropower and hydrogen storage,providing detailed cost analysis and future projections.It identifies key parameters influencing the cost and efficiency of these systems,offering insights into optimizing storage solutions for renewable energy.Moreover,this research underscores the potential of hybrid systems to reduce dependency on fossil fuels,particularly during peak demand periods,and emphasizes the importance of seasonal and geographic considerations in selecting energy sources.The study highlights the importance of policy support and investment in hybrid renewable systems and calls for further research into optimizing these systems for different seasonal and geographic conditions.Overall,the integration of renewable energy sources with hydropower and hydrogen storage offers a promising pathway to a sustainable,economical,and resilient energy future.展开更多
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e...Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.展开更多
As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts...As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage.展开更多
The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v...The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.展开更多
This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o...This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.展开更多
In this paper, a reinforcement learning-based multibattery energy storage system(MBESS) scheduling policy is proposed to minimize the consumers ’ electricity cost. The MBESS scheduling problem is modeled as a Markov ...In this paper, a reinforcement learning-based multibattery energy storage system(MBESS) scheduling policy is proposed to minimize the consumers ’ electricity cost. The MBESS scheduling problem is modeled as a Markov decision process(MDP) with unknown transition probability. However, the optimal value function is time-dependent and difficult to obtain because of the periodicity of the electricity price and residential load. Therefore, a series of time-independent action-value functions are proposed to describe every period of a day. To approximate every action-value function, a corresponding critic network is established, which is cascaded with other critic networks according to the time sequence. Then, the continuous management strategy is obtained from the related action network. Moreover, a two-stage learning protocol including offline and online learning stages is provided for detailed implementation in real-time battery management. Numerical experimental examples are given to demonstrate the effectiveness of the developed algorithm.展开更多
Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additio...Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additional energy storing capability via electrochemical faradaic contribution on electrodes for high-performance flexible ESSs.Particularly,determining effective material combinations between electrodes and RMs is essential for maximizing surface faradaic redox reactions for energy-storage performance.In this study,an electrode-RM system comprising heterostructured hybrid(carbon fiber(CF)/MnO_(2)) faradaic electrodes and iodine RMs(I-RMs) in a redox-active electrolyte is investigated.The CF/MnO_(2)with the 1-RMs(CF/MnO_(2)-I) induces dominant catalytic faradaic interaction with the I-RMs,significantly enhancing the surface faradaic kinetics and increasing the overall energy-storage performance.The CF/MnO_(2)-I ESSs show a 12.6-fold(or higher) increased volumetric energy density of 793.81 mWh L^(-1)at a current of 10 μA relative to ESSs using CF/MnO_(2)without I-RMs(CF/MnO_(2)).Moreover,the CF/MnO_(2)-I retains 93.1% of its initial capacitance after 10,000 cycles,validating the excellent cyclability.Finally,the flexibility of the ESSs is tested at different bending angles(180° to 0°),demonstrating its feasibility for flexible and high-wear environments.Therefore,CF/MnO_(2)electrodes present a practical material combination for high-performance flexible energy-storage devices owing to the catalytic faradaic interaction with I-RMs.展开更多
Recent economic growth and development have considerably raised energy consumption over the globe.Electric load prediction approaches become essential for effective planning,decision-making,and contract evaluation of ...Recent economic growth and development have considerably raised energy consumption over the globe.Electric load prediction approaches become essential for effective planning,decision-making,and contract evaluation of the power systems.In order to achieve effective forecasting outcomes with minimumcomputation time,this study develops an improved whale optimization with deep learning enabled load prediction(IWO-DLELP)scheme for energy storage systems(ESS)in smart grid platform.The major intention of the IWO-DLELP technique is to effectually forecast the electric load in SG environment for designing proficient ESS.The proposed IWO-DLELP model initially undergoes pre-processing in two stages namely min-max normalization and feature selection.Besides,partition clustering approach is applied for the decomposition of data into distinct clusters with respect to distance and objective functions.Moreover,IWO with bidirectional gated recurrent unit(BiGRU)model is applied for the prediction of load and the hyperparameters are tuned by the use of IWO algorithm.The experiment analysis reported the enhanced results of the IWO-DLELP model over the recent methods interms of distinct evaluation measures.展开更多
Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the...Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions.Hence,to balance the interests of the environment and the building users,this paper proposes an optimal operation scheme for the photovoltaic,energy storage system,and flexible building power system(PEFB),considering the combined benefit of building.Based on the model of conventional photovoltaic(PV)and energy storage system(ESS),the mathematical optimization model of the system is proposed by taking the combined benefit of the building to the economy,society,and environment as the optimization objective,taking the near-zero energy consumption and carbon emission limitation of the building as the main constraints.The optimized operation strategy in this paper can give optimal results by making a trade-off between the users’costs and the combined benefits of the building.The efficiency and effectiveness of the proposed methods are verified by simulated experiments.展开更多
To achieve the high availability of health data in erasure-coded cloud storage systems,the data update performance in erasure coding should be continuously optimized.However,the data update performance is often bottle...To achieve the high availability of health data in erasure-coded cloud storage systems,the data update performance in erasure coding should be continuously optimized.However,the data update performance is often bottlenecked by the constrained cross-rack bandwidth.Various techniques have been proposed in the literature to improve network bandwidth efficiency,including delta transmission,relay,and batch update.These techniques were largely proposed individually previously,and in this work,we seek to use them jointly.To mitigate the cross-rack update traffic,we propose DXR-DU which builds on four valuable techniques:(i)delta transmission,(ii)XOR-based data update,(iii)relay,and(iv)batch update.Meanwhile,we offer two selective update approaches:1)data-deltabased update,and 2)parity-delta-based update.The proposed DXR-DU is evaluated via trace-driven local testbed experiments.Comprehensive experiments show that DXR-DU can significantly improve data update throughput while mitigating the cross-rack update traffic.展开更多
The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can b...The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can be employed,which encodes and decodes binary data to and from synthesized strands of DNA.Vector quantization(VQ)is a commonly employed scheme for image compression and the optimal codebook generation is an effective process to reach maximum compression efficiency.This article introduces a newDNAComputingwithWater StriderAlgorithm based Vector Quantization(DNAC-WSAVQ)technique for Data Storage Systems.The proposed DNAC-WSAVQ technique enables encoding data using DNA computing and then compresses it for effective data storage.Besides,the DNAC-WSAVQ model initially performsDNA encoding on the input images to generate a binary encoded form.In addition,aWater Strider algorithm with Linde-Buzo-Gray(WSA-LBG)model is applied for the compression process and thereby storage area can be considerably minimized.In order to generate optimal codebook for LBG,the WSA is applied to it.The performance validation of the DNAC-WSAVQ model is carried out and the results are inspected under several measures.The comparative study highlighted the improved outcomes of the DNAC-WSAVQ model over the existing methods.展开更多
In this paper,the installation of energy storage systems(EES)and their role in grid peak load shaving in two echelons,their distribution and generation are investigated.First,the optimal placement and capacity of the ...In this paper,the installation of energy storage systems(EES)and their role in grid peak load shaving in two echelons,their distribution and generation are investigated.First,the optimal placement and capacity of the energy storage is taken into consideration,then,the charge-discharge strategy for this equipment is determined.Here,Genetic Algorithm(GA)and Particle Swarm Optimization(PSO)are used to calculate the minimum and maximum load in the network with the presence of energy storage systems.The energy storage systems were utilized in a distribution system with the aid of a peak load shaving approach.Ultimately,the battery charge-discharge is managed at any time during the day,considering the load consumption at each hour.The results depict that the load curve reached a constant state by managing charge-discharge with no significant changes.This shows the significance of such matters in terms of economy and technicality.展开更多
Recently,research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase.Physical expansion limits exist for tradition...Recently,research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase.Physical expansion limits exist for traditional standalone storage systems,such as I/O and file system capacity.However,the existing distributed storage system does not consider where data is consumed and is more focused on data dissemination and optimizing the lookup cost of data location.And this leads to system performance degradation due to low locality occurring in a Wide Area Network(WAN)environment with high network latency.This problem hinders deploying distributed storage systems to multiple data centers over WAN.It lowers the scalability of distributed storage systems to accommodate data storage needs.This paper proposes a method for distributing data in a WAN environment considering network latency and data locality to solve this problem and increase overall system performance.The proposed distributed storage method monitors data utilization and locality to classify data temperature as hot,warm,and cold.With assigned data temperature,the proposed algorithm adaptively selects the appropriate data center and places data accordingly to overcome the excess latency from the WAN environment,leading to overall system performance degradation.This paper also conducts simulations to evaluate the proposed and existing distributed storage methods.The result shows that our proposed method reduced latency by 38%compared to the existing method.Therefore,the proposed method in this paper can be used in large-scale distributed storage systems over a WAN environment to improve latency and performance compared to existing methods,such as consistent hashing.展开更多
The expected cost per unit of time for a sequential inspection policy is derived. It still has some difficulties to compute an optimal sequential policy numerically, which minimizes the expected cost of a system with ...The expected cost per unit of time for a sequential inspection policy is derived. It still has some difficulties to compute an optimal sequential policy numerically, which minimizes the expected cost of a system with finite number of inspections. This paper gives the algorithm for an optimal inspection schedule and specifies the computing procedure for a Weibull distribution. Using this algorithm, optimal inspection times are computed as a numerical result. Compared with the periodic point inspection, the policies in this paper reduce the cost successfully.展开更多
The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while ...The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.展开更多
To reduce the time required to complete the regeneration process of erasure codes, we propose a Tree-structured Parallel Regeneration (TPR) scheme for multiple data losses in distributed storage systems. Under the sch...To reduce the time required to complete the regeneration process of erasure codes, we propose a Tree-structured Parallel Regeneration (TPR) scheme for multiple data losses in distributed storage systems. Under the scheme, two algorithms are proposed for the construction of multiple regeneration trees, namely the edge-disjoint algorithm and edge-sharing algorithm. The edge-disjoint algorithm constructs multiple independent trees, and is simple and appropriate for environments where newcomers and their providers are distributed over a large area and have few intersections. The edge-sharing algorithm constructs multiple trees that compete to utilize the bandwidth, and make a better utilization of the bandwidth, although it needs to measure the available band-width and deal with the bandwidth changes; it is therefore difficult to implement in practical systems. The parallel regeneration for multiple data losses of TPR primarily includes two optimizations: firstly, transferring the data through the bandwidth optimized-paths in a pipe-line manner; secondly, executing data regeneration over multiple trees in parallel. To evaluate the proposal, we implement an event-based simulator and make a detailed comparison with some popular regeneration methods. The quantitative comparison results show that the use of TPR employing either the edge-disjoint algorithm or edge-sharing algorithm reduces the regeneration time significantly.展开更多
基金supported by National Natural Science Foundation of China(U2066209)。
文摘Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.
基金supported by the Jilin Province Higher Education TeachingReform Research Project Funding(Contract No.2020285O73B005E).
文摘In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation,and speed up the process of electric-hydrogen-electricity conversion.This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit,and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen storage unit.These models are of great significance for studying and optimizing gas storage technology.Through these models,the performance of gas storage units can be better understood and improved.These studies are very helpful for improving energy storage efficiency and sustainable development.The factors affecting the charge-discharge efficiency of hydrogen storage units are analyzed.By integrating the models of each unit and considering the capacity degradation of the hydrogen storage system,we can construct an efficiency model for a large hydrogen storage system and power conversion system.In addition,the simulation models of the hydrogen production system and hydrogen consumption system were established in MATLAB/Simulink.The accuracy and effectiveness of the simulation model were proved by comparing the output voltage variation curve of the simulation with the polarization curve of the typical hydrogen production system and hydrogen consumption system.The results show that the charge-discharge efficiency of the hydrogen storage unit increases with the increase of operating temperature,and H2 and O2 partial voltage have little influence on the charge-discharge efficiency.In the process of power conversion system converter rectification operation,its efficiency decreases with the increase of temperature,while in the process of inverter operation,power conversion system efficiency increases with the increase of temperature.Combined with the efficiency of each hydrogen storage unit and power conversion system converter,the upper limit of the capacity loss of different hydrogen storage units was set.The optimal charge-discharge efficiency of the hydrogen storage system was obtained by using the Cplex solver at 36.46%and 66.34%.
文摘To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.
文摘Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.
文摘Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system efficiency and manage energy costs.This paper investigates renewable and clean storage systems,specifically examining the storage of electricity generated from renewable sources using hydropower plants and hydrogen,both of which are highly efficient and promising for future energy production and storage.The study utilizes extensive literature data to analyze the impact of various parameters on the cost per kWh of electricity production in hybrid renewable systems incorporating hydropower and hydrogen storage plants.Results indicate that these hybrid systems can store electricity efficiently and cost-effectively,with production costs ranging from 0.126 to 0.3$/kWh for renewablehydropower systems and 0.118 to 0.42$/kWh for renewable-hydrogen systems,with expected cost reductions over the next decade due to technological advancements and increased market adoption.The novelty of this study lies in its comprehensive comparison of hybrid renewable systems integrating hydropower and hydrogen storage,providing detailed cost analysis and future projections.It identifies key parameters influencing the cost and efficiency of these systems,offering insights into optimizing storage solutions for renewable energy.Moreover,this research underscores the potential of hybrid systems to reduce dependency on fossil fuels,particularly during peak demand periods,and emphasizes the importance of seasonal and geographic considerations in selecting energy sources.The study highlights the importance of policy support and investment in hybrid renewable systems and calls for further research into optimizing these systems for different seasonal and geographic conditions.Overall,the integration of renewable energy sources with hydropower and hydrogen storage offers a promising pathway to a sustainable,economical,and resilient energy future.
基金Supported by the National Natural Science Foundation of China(No.51966013)Inner Mongolia Natural Science Foundation Jieqing Project(No.2023JQ04)+1 种基金the National Natural Science Foundation of China(No.51966018)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.STZC202230).
文摘Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.
基金the North China Branch of State Grid Corporation of China,Contract No.SGNC0000BGWT2310175.
文摘As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage.
基金supported by the Science and Technology Support Program of Guizhou Province([2022]General 012)the Key Science and Technology Project of China Southern Power Grid Corporation(GZKJXM20220043)。
文摘The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.
基金supported by the State Grid Science and Technology Project (No.52999821N004)。
文摘This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.
基金supported by the National Key R&D Program of China (2018AAA0101400)the National Natural Science Foundation of China (61921004,62173251,U1713209,62236002)+1 种基金the Fundamental Research Funds for the Central UniversitiesGuangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control。
文摘In this paper, a reinforcement learning-based multibattery energy storage system(MBESS) scheduling policy is proposed to minimize the consumers ’ electricity cost. The MBESS scheduling problem is modeled as a Markov decision process(MDP) with unknown transition probability. However, the optimal value function is time-dependent and difficult to obtain because of the periodicity of the electricity price and residential load. Therefore, a series of time-independent action-value functions are proposed to describe every period of a day. To approximate every action-value function, a corresponding critic network is established, which is cascaded with other critic networks according to the time sequence. Then, the continuous management strategy is obtained from the related action network. Moreover, a two-stage learning protocol including offline and online learning stages is provided for detailed implementation in real-time battery management. Numerical experimental examples are given to demonstrate the effectiveness of the developed algorithm.
基金supported by the National Research Foundation of Korea grant funded by the Korean government (MSIT)(2020R1A2C1101039)the Commercializations Promotion Agency for R&D Outcomes (COMPA) grant funded by the Korea government(MSIT)(2021E200)+1 种基金supported by“Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(MOE)(2021RIS-004)supported by the Soonchunhyang University Research Fund。
文摘Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additional energy storing capability via electrochemical faradaic contribution on electrodes for high-performance flexible ESSs.Particularly,determining effective material combinations between electrodes and RMs is essential for maximizing surface faradaic redox reactions for energy-storage performance.In this study,an electrode-RM system comprising heterostructured hybrid(carbon fiber(CF)/MnO_(2)) faradaic electrodes and iodine RMs(I-RMs) in a redox-active electrolyte is investigated.The CF/MnO_(2)with the 1-RMs(CF/MnO_(2)-I) induces dominant catalytic faradaic interaction with the I-RMs,significantly enhancing the surface faradaic kinetics and increasing the overall energy-storage performance.The CF/MnO_(2)-I ESSs show a 12.6-fold(or higher) increased volumetric energy density of 793.81 mWh L^(-1)at a current of 10 μA relative to ESSs using CF/MnO_(2)without I-RMs(CF/MnO_(2)).Moreover,the CF/MnO_(2)-I retains 93.1% of its initial capacitance after 10,000 cycles,validating the excellent cyclability.Finally,the flexibility of the ESSs is tested at different bending angles(180° to 0°),demonstrating its feasibility for flexible and high-wear environments.Therefore,CF/MnO_(2)electrodes present a practical material combination for high-performance flexible energy-storage devices owing to the catalytic faradaic interaction with I-RMs.
文摘Recent economic growth and development have considerably raised energy consumption over the globe.Electric load prediction approaches become essential for effective planning,decision-making,and contract evaluation of the power systems.In order to achieve effective forecasting outcomes with minimumcomputation time,this study develops an improved whale optimization with deep learning enabled load prediction(IWO-DLELP)scheme for energy storage systems(ESS)in smart grid platform.The major intention of the IWO-DLELP technique is to effectually forecast the electric load in SG environment for designing proficient ESS.The proposed IWO-DLELP model initially undergoes pre-processing in two stages namely min-max normalization and feature selection.Besides,partition clustering approach is applied for the decomposition of data into distinct clusters with respect to distance and objective functions.Moreover,IWO with bidirectional gated recurrent unit(BiGRU)model is applied for the prediction of load and the hyperparameters are tuned by the use of IWO algorithm.The experiment analysis reported the enhanced results of the IWO-DLELP model over the recent methods interms of distinct evaluation measures.
基金support by Ministry of Housing and Urban-Rural Development’s Science and Technology Plan Project 2022(Hubei Province).
文摘Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions.Hence,to balance the interests of the environment and the building users,this paper proposes an optimal operation scheme for the photovoltaic,energy storage system,and flexible building power system(PEFB),considering the combined benefit of building.Based on the model of conventional photovoltaic(PV)and energy storage system(ESS),the mathematical optimization model of the system is proposed by taking the combined benefit of the building to the economy,society,and environment as the optimization objective,taking the near-zero energy consumption and carbon emission limitation of the building as the main constraints.The optimized operation strategy in this paper can give optimal results by making a trade-off between the users’costs and the combined benefits of the building.The efficiency and effectiveness of the proposed methods are verified by simulated experiments.
基金supported by Major Special Project of Sichuan Science and Technology Department(2020YFG0460)Central University Project of China(ZYGX2020ZB020,ZYGX2020ZB019).
文摘To achieve the high availability of health data in erasure-coded cloud storage systems,the data update performance in erasure coding should be continuously optimized.However,the data update performance is often bottlenecked by the constrained cross-rack bandwidth.Various techniques have been proposed in the literature to improve network bandwidth efficiency,including delta transmission,relay,and batch update.These techniques were largely proposed individually previously,and in this work,we seek to use them jointly.To mitigate the cross-rack update traffic,we propose DXR-DU which builds on four valuable techniques:(i)delta transmission,(ii)XOR-based data update,(iii)relay,and(iv)batch update.Meanwhile,we offer two selective update approaches:1)data-deltabased update,and 2)parity-delta-based update.The proposed DXR-DU is evaluated via trace-driven local testbed experiments.Comprehensive experiments show that DXR-DU can significantly improve data update throughput while mitigating the cross-rack update traffic.
基金This research was supported in part by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493)in part by the NRF grant funded by the Korea government(MSIT)(NRF-2022R1A2C1004401)in part by the 2022 Yeungnam University Research Grant.
文摘The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can be employed,which encodes and decodes binary data to and from synthesized strands of DNA.Vector quantization(VQ)is a commonly employed scheme for image compression and the optimal codebook generation is an effective process to reach maximum compression efficiency.This article introduces a newDNAComputingwithWater StriderAlgorithm based Vector Quantization(DNAC-WSAVQ)technique for Data Storage Systems.The proposed DNAC-WSAVQ technique enables encoding data using DNA computing and then compresses it for effective data storage.Besides,the DNAC-WSAVQ model initially performsDNA encoding on the input images to generate a binary encoded form.In addition,aWater Strider algorithm with Linde-Buzo-Gray(WSA-LBG)model is applied for the compression process and thereby storage area can be considerably minimized.In order to generate optimal codebook for LBG,the WSA is applied to it.The performance validation of the DNAC-WSAVQ model is carried out and the results are inspected under several measures.The comparative study highlighted the improved outcomes of the DNAC-WSAVQ model over the existing methods.
基金supported in part by an International Research Partnership“Electrical Engineering-Thai French Research Center(EE-TFRC)”under the project framework of the Lorraine Universitéd’Excellence(LUE)in cooperation between Universitéde Lorraine and King Mongkut’s University of Technology North Bangkok and in part by the National Research Council of Thailand(NRCT)under Senior Research Scholar Program under Grant No.N42A640328.
文摘In this paper,the installation of energy storage systems(EES)and their role in grid peak load shaving in two echelons,their distribution and generation are investigated.First,the optimal placement and capacity of the energy storage is taken into consideration,then,the charge-discharge strategy for this equipment is determined.Here,Genetic Algorithm(GA)and Particle Swarm Optimization(PSO)are used to calculate the minimum and maximum load in the network with the presence of energy storage systems.The energy storage systems were utilized in a distribution system with the aid of a peak load shaving approach.Ultimately,the battery charge-discharge is managed at any time during the day,considering the load consumption at each hour.The results depict that the load curve reached a constant state by managing charge-discharge with no significant changes.This shows the significance of such matters in terms of economy and technicality.
基金This research was supported by the Chung-Ang University Graduate Research Scholarship in 2021.This study was carried out with the support of‘R&D Program for Forest Science Technology(Project No.2021338C10-2223-CD02)’provided by Korea Forest Service(Korea Forestry Promotion Institute).
文摘Recently,research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase.Physical expansion limits exist for traditional standalone storage systems,such as I/O and file system capacity.However,the existing distributed storage system does not consider where data is consumed and is more focused on data dissemination and optimizing the lookup cost of data location.And this leads to system performance degradation due to low locality occurring in a Wide Area Network(WAN)environment with high network latency.This problem hinders deploying distributed storage systems to multiple data centers over WAN.It lowers the scalability of distributed storage systems to accommodate data storage needs.This paper proposes a method for distributing data in a WAN environment considering network latency and data locality to solve this problem and increase overall system performance.The proposed distributed storage method monitors data utilization and locality to classify data temperature as hot,warm,and cold.With assigned data temperature,the proposed algorithm adaptively selects the appropriate data center and places data accordingly to overcome the excess latency from the WAN environment,leading to overall system performance degradation.This paper also conducts simulations to evaluate the proposed and existing distributed storage methods.The result shows that our proposed method reduced latency by 38%compared to the existing method.Therefore,the proposed method in this paper can be used in large-scale distributed storage systems over a WAN environment to improve latency and performance compared to existing methods,such as consistent hashing.
文摘The expected cost per unit of time for a sequential inspection policy is derived. It still has some difficulties to compute an optimal sequential policy numerically, which minimizes the expected cost of a system with finite number of inspections. This paper gives the algorithm for an optimal inspection schedule and specifies the computing procedure for a Weibull distribution. Using this algorithm, optimal inspection times are computed as a numerical result. Compared with the periodic point inspection, the policies in this paper reduce the cost successfully.
基金relates to Department of Navy award(N00014-20-1-2858)。
文摘The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.
基金supported by the National Grand Fundamental Research of China (973 Program) under Grant No. 2011CB302601the National High Technology Research and Development of China (863 Program) under GrantNo. 2013AA01A213+2 种基金the National Natural Science Foundation of China under Grant No. 60873215the Natural Science Foundation for Distinguished Young Scholars of Hunan Province under Grant No. S2010J5050Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20124307110015
文摘To reduce the time required to complete the regeneration process of erasure codes, we propose a Tree-structured Parallel Regeneration (TPR) scheme for multiple data losses in distributed storage systems. Under the scheme, two algorithms are proposed for the construction of multiple regeneration trees, namely the edge-disjoint algorithm and edge-sharing algorithm. The edge-disjoint algorithm constructs multiple independent trees, and is simple and appropriate for environments where newcomers and their providers are distributed over a large area and have few intersections. The edge-sharing algorithm constructs multiple trees that compete to utilize the bandwidth, and make a better utilization of the bandwidth, although it needs to measure the available band-width and deal with the bandwidth changes; it is therefore difficult to implement in practical systems. The parallel regeneration for multiple data losses of TPR primarily includes two optimizations: firstly, transferring the data through the bandwidth optimized-paths in a pipe-line manner; secondly, executing data regeneration over multiple trees in parallel. To evaluate the proposal, we implement an event-based simulator and make a detailed comparison with some popular regeneration methods. The quantitative comparison results show that the use of TPR employing either the edge-disjoint algorithm or edge-sharing algorithm reduces the regeneration time significantly.