Geological disasters on the superficial seafloor were revealed in geological investigation on the Yellow River subaqueous delta. Combined with dynamic triaxial tests and wave flume experiments, occurring conditions an...Geological disasters on the superficial seafloor were revealed in geological investigation on the Yellow River subaqueous delta. Combined with dynamic triaxial tests and wave flume experiments, occurring conditions and forming patterns of liquefaction as well as motion of the liquefied soil were explained in this paper. Based on the viewpoint that the geological disasters were formed due to silty soil liquefaction under storm waves, re-stratification issue of the superficial stratum was analyzed. Movement of the liquefied soil agreed with the wave, leading to differentiation of the soil particles. Research issues in respect of geological, environment and engineering of storm-induced liquefaction were also discussed.展开更多
Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. Th...Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. The action balance equation, SWAN, was used as a wave numerical model to forecast strong storm waves in the Yangtze Estuary. The spherical coordinate system and source terms used in the equation are described in this paper. The significant wave height and the wave orbital motion velocity near the bottom of the channel during 20 m/s winds in the EES direction were simulated, and the model was calibrated with observation data of winds and waves generated by Tropical Cyclone 9912. The distribution of critical velocity for incipient motion along the bottom was computed according to the threshold velocity formula for bottom sediment. The mechanism of rapid deposition is analyzed based on the difference between the root-mean-square value of the near-bottom wave orbital motion velocity and the bottom critical tractive velocity. The results show that a large amount of bottom sediments from Hengsha Shoal and Jiuduan Shoal are lifted into the water body when 20 m/s wind is blowing in the EES direction. Some of the sediments may enter the channel with the cross-channel current, causing serious rapid deposition. Finally, the tendency of the storm to induce rapid deposition in the Yangtze Estuary channel zone is analyzed.展开更多
基金supported by National Science Foundation of China (No. 41076021)
文摘Geological disasters on the superficial seafloor were revealed in geological investigation on the Yellow River subaqueous delta. Combined with dynamic triaxial tests and wave flume experiments, occurring conditions and forming patterns of liquefaction as well as motion of the liquefied soil were explained in this paper. Based on the viewpoint that the geological disasters were formed due to silty soil liquefaction under storm waves, re-stratification issue of the superficial stratum was analyzed. Movement of the liquefied soil agreed with the wave, leading to differentiation of the soil particles. Research issues in respect of geological, environment and engineering of storm-induced liquefaction were also discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 50779015)
文摘Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. The action balance equation, SWAN, was used as a wave numerical model to forecast strong storm waves in the Yangtze Estuary. The spherical coordinate system and source terms used in the equation are described in this paper. The significant wave height and the wave orbital motion velocity near the bottom of the channel during 20 m/s winds in the EES direction were simulated, and the model was calibrated with observation data of winds and waves generated by Tropical Cyclone 9912. The distribution of critical velocity for incipient motion along the bottom was computed according to the threshold velocity formula for bottom sediment. The mechanism of rapid deposition is analyzed based on the difference between the root-mean-square value of the near-bottom wave orbital motion velocity and the bottom critical tractive velocity. The results show that a large amount of bottom sediments from Hengsha Shoal and Jiuduan Shoal are lifted into the water body when 20 m/s wind is blowing in the EES direction. Some of the sediments may enter the channel with the cross-channel current, causing serious rapid deposition. Finally, the tendency of the storm to induce rapid deposition in the Yangtze Estuary channel zone is analyzed.