Chaotic Brillouin optical correlation domain analysis(BOCDA)has been proposed and experimentally demonstrated with the advantage of high spatial resolution.However,it faces the same issue of the temperature and strain...Chaotic Brillouin optical correlation domain analysis(BOCDA)has been proposed and experimentally demonstrated with the advantage of high spatial resolution.However,it faces the same issue of the temperature and strain cross-sensitivity.In this paper,the simultaneous measurement of temperature and strain can be preliminarily achieved by analyzing the two Brillouin frequencies of the chaotic laser in a large-effective-area fiber(LEAF).A temperature resolution of 1℃ and a strain resolution of 20μξ can be obtained with a spatial resolution of 3.9cm.The actual temperature and strain measurement errors are 0.37℃ and 10μξ,respectively,which are within the maximum measurement errors.展开更多
In this Letter, an alternative solution is proposed and demonstrated for simultaneous measurement of axial strain and temperature. This sensor consists of two twisted points on a commercial single mode fiber introduce...In this Letter, an alternative solution is proposed and demonstrated for simultaneous measurement of axial strain and temperature. This sensor consists of two twisted points on a commercial single mode fiber introduced by flame-heated and rotation treatment. The fabrication process modifies the geometrical configuration and refractive index of the fiber. Different cladding modes are excited at the first twisted point, and part of them are coupled back to the fiber core at the second twisted point. Experimental results show distinct sensitivities of 34.9 pm/με with 49.23 pm/℃ and -36.19 pm/με with 62.99 pm/℃ for the two selected destructive interference wavelengths.展开更多
The controlling plastic deformation mechanisms(i.e.slip or twinning)and the structural crash performance of Mg alloys are strongly influenced by loading mode,texture and microstructure.This paper summarizes the main r...The controlling plastic deformation mechanisms(i.e.slip or twinning)and the structural crash performance of Mg alloys are strongly influenced by loading mode,texture and microstructure.This paper summarizes the main results from an experimental program to assess these effects for commercial Mg alloy extrusions(AM30 and AZ31),sheet(AZ31),and high pressure die castings(HPDC,AM50 and AM60).Uniaxial tensile and compressive tests were performed over a wide range of strain rate and temperature(i.e.0.00075–2800 s^(−1) and 100℃ to−150℃)using conventional servo-hydraulic and high-strain-rate universal test machines and a split-Hopkinson-bar(SHB)apparatus.In primarily-slip-dominant deformation,the true stress–strain curves showed approximate power-law behavior,and the effects of strain rate and temperature on yield strength could be approximately described by constitutive equations linearly dependent on the rate parameter,Tln(5.3×10^(7)/ɛ˙)where T is test temperature in Kelvin andɛ˙is strain rate in s^(−1).In primarily-twin-dominant deformation,the effects of strain rate and temperature on yield and initial flow stress were negligible or small from quasi-static to 2800 s^(−1) owing to the athermal characteristics of mechanical twinning;the effects may become more pronounced with exhaustion of twinning and increasing proportion of slip.展开更多
A coarse-grained AM50 alloy was used as a model alloy for investigation of constitutive behaviour,Charpy toughness and effect of stress state on deformation and failure of cast Mg alloys.The results provide critical m...A coarse-grained AM50 alloy was used as a model alloy for investigation of constitutive behaviour,Charpy toughness and effect of stress state on deformation and failure of cast Mg alloys.The results provide critical mechanical properties of a cast AM50 alloy for crashworthiness assessment and development of finite element simulation techniques.For cast Mg alloys,the effect of strain rate and temperature is larger on tensile strength than on compressive strength because twinning is more extensive in compression than in tension.The effect of strain rate on compressive strength is negligible because twinning activity of the cast Mg alloy is dominant.The load vs.deflection of Charpy specimens were measured for modelling,and the effect of loading rate and temperature on load of Charpy specimens is very small because part of the specimen is in compression.The equivalent strain to fracture of the cylindrical round notched tension specimen decreases with increasing stress triaxiality;though for the flat-grooved plane strain specimen,the equivalent fracture strain remains constant over the range of stress triaxiality investigated.Because the two different specimen geometries give rise to different Lode angle values,the test results show that the Lode angle parameter is an important parameter for deformation and fracture of Mg alloys.Finite element simulations of loading of the cylindrical notched-tension and Charpy specimens were carried out using a Lode-angle dependent von Mises model,and were found to provide a reasonable description of the load-displacement curves measured in the tests.For the flat-grooved plane strain specimens,the computations under-predicted the force-displacement response measured.展开更多
The strain-temperature cross-sensitivity problem easily occurs in the engineering strain monitoring of the self-sensing embedded with fiber Bragg grating(FBG)sensors.In this work,a theoretical investigation of the str...The strain-temperature cross-sensitivity problem easily occurs in the engineering strain monitoring of the self-sensing embedded with fiber Bragg grating(FBG)sensors.In this work,a theoretical investigation of the strain-temperature cross-sensitivity has been performed using the temperature reference grating method.To experimentally observe and theoretically verify the problem,the substrate materials,the preloading technique,and the FBG initial central wavelength were taken as main parameters.And a series of sensitivity coefficients calibration tests and temperature compensation tests have been designed and carried out.It was found that when the FBG sensors were embedded on different substrates,their coefficients of the temperature sensitivity were significantly changed.Besides,the larger the coefficients of thermal expansion(CTE)of substrates were,the higher the temperature sensitivity coefficients would be.On the other hand,the effect of the preloading technique and FBG initial wavelength was negligible on both the strain monitoring and temperature compensation.In the case of similar substrates,we did not observe any difference between temperature sensitivity coefficients of the temperature compensation FBG with one free end or two free ends.The curves of the force along with temperature were almost overlapped with minor differences(less than 1%)gained by FBG sensors and pressure sensors,which verified the accuracy of the temperature compensation method.We suggest that this work can provide efficient solutions to the strain-temperature cross-sensitivity for engineering strain monitoring with the self-sensing element embedded with FBG sensors.展开更多
Optical fibre sensors based on Brillouin scattering have been vigorously studied in the context of structural health monitoring on account of their capacity for distributed strain and temperature measurements.However,...Optical fibre sensors based on Brillouin scattering have been vigorously studied in the context of structural health monitoring on account of their capacity for distributed strain and temperature measurements.However,real-time distributed strain measurement has been achieved only for two-end-access systems;such systems reduce the degree of freedom in embedding the sensors into structures,and furthermore render the measurement no longer feasible when extremely high loss or breakage occurs at a point along the sensing fibre.Here,we demonstrate real-time distributed measurement with an intrinsically one-end-access reflectometry configuration by using a correlation-domain technique.In this method,the Brillouin gain spectrum is obtained at high speed using a voltage-controlled oscillator,and the Brillouin frequency shift is converted into a phase delay of a synchronous sinusoidal waveform;the phase delay is subsequently converted into a voltage,which can be directly measured.When a single-point measurement is performed at an arbitrary position,a strain sampling rate of up to 100 kHz is experimentally verified by detecting locally applied dynamic strain at 1 kHz.When distributed measurements are performed at 100 points with 10 times averaging,a repetition rate of 100 Hz is verified by tracking a mechanical wave propagating along the fibre.Some drawbacks of this ultrahigh-speed configuration,including the reduced measurement accuracy,lowered spatial resolution and limited strain dynamic range,are also discussed.展开更多
The development of two simple methods for wavelength-optical intensity modulation techniques for fiber Bragg grating (FBG) sensors is presented. The performance is evaluated by measuring the strain and temperature. ...The development of two simple methods for wavelength-optical intensity modulation techniques for fiber Bragg grating (FBG) sensors is presented. The performance is evaluated by measuring the strain and temperature. The first method consists of a narrow band source, an optical circulator, an FBG; and a power meter. The source and Bragg reflected signal from the FBG need to be matched to get linear results with good power levels. The source spectral power levels are very critical in this study. The power reflected from a matched reference FBG is fed into the measuring FBG in the second method. Since the FBGs are matched, the entire power is reflected back initially. During the measurement, the change in the measurand causes the reflected power from the sensing FBG to vary. A costly high resolution spectrum analyzer is required only during the characterization of the FBG and source. The performances of two interrogators are compared by measuring the strain and temperature. In the second method, the strain measurements can be made insensitive to the temperature variation by selecting a source with a flat spectrum at the measurement range. Highlights of these methods are the portability, cost effectiveness and better resolution.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)(Grant Nos.61527819 and 61875146)in part by the Research Project Supported by Shanxi Province Youth Science and Technology Foundation(Grant No.201601D021069)+1 种基金in part by the Key Research and Development Program(High-Tech Field)of Shanxi Province(Grant Nos.201803D121064 and 201803D31044)in part by the Program for Sanjin Scholar,in part by the Transformation of Scientific and Technological Achievements Programs(TSTAP)of Higher Education Institutions in Shanxi,and in part by the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.
文摘Chaotic Brillouin optical correlation domain analysis(BOCDA)has been proposed and experimentally demonstrated with the advantage of high spatial resolution.However,it faces the same issue of the temperature and strain cross-sensitivity.In this paper,the simultaneous measurement of temperature and strain can be preliminarily achieved by analyzing the two Brillouin frequencies of the chaotic laser in a large-effective-area fiber(LEAF).A temperature resolution of 1℃ and a strain resolution of 20μξ can be obtained with a spatial resolution of 3.9cm.The actual temperature and strain measurement errors are 0.37℃ and 10μξ,respectively,which are within the maximum measurement errors.
基金supported by the National Natural Science Foundation of China(Nos.61775070 and 61275083)the Fundamental Research Funds for the Central Universities(No.2017KFYXJJ032)
文摘In this Letter, an alternative solution is proposed and demonstrated for simultaneous measurement of axial strain and temperature. This sensor consists of two twisted points on a commercial single mode fiber introduced by flame-heated and rotation treatment. The fabrication process modifies the geometrical configuration and refractive index of the fiber. Different cladding modes are excited at the first twisted point, and part of them are coupled back to the fiber core at the second twisted point. Experimental results show distinct sensitivities of 34.9 pm/με with 49.23 pm/℃ and -36.19 pm/με with 62.99 pm/℃ for the two selected destructive interference wavelengths.
基金This work is part of the crashworthiness R&D task of an on-going Canada-China-US Magnesium Front-End Research and Development(MFERD)project.The Canadian task is funded by the CCT&I and ASM-NGV programs,Govemment of Canada.
文摘The controlling plastic deformation mechanisms(i.e.slip or twinning)and the structural crash performance of Mg alloys are strongly influenced by loading mode,texture and microstructure.This paper summarizes the main results from an experimental program to assess these effects for commercial Mg alloy extrusions(AM30 and AZ31),sheet(AZ31),and high pressure die castings(HPDC,AM50 and AM60).Uniaxial tensile and compressive tests were performed over a wide range of strain rate and temperature(i.e.0.00075–2800 s^(−1) and 100℃ to−150℃)using conventional servo-hydraulic and high-strain-rate universal test machines and a split-Hopkinson-bar(SHB)apparatus.In primarily-slip-dominant deformation,the true stress–strain curves showed approximate power-law behavior,and the effects of strain rate and temperature on yield strength could be approximately described by constitutive equations linearly dependent on the rate parameter,Tln(5.3×10^(7)/ɛ˙)where T is test temperature in Kelvin andɛ˙is strain rate in s^(−1).In primarily-twin-dominant deformation,the effects of strain rate and temperature on yield and initial flow stress were negligible or small from quasi-static to 2800 s^(−1) owing to the athermal characteristics of mechanical twinning;the effects may become more pronounced with exhaustion of twinning and increasing proportion of slip.
基金This study is part of CanmetMATERIALS(CMAT)projects funded by the Magnesium Front End R&D(MFERD)program provided by Natural Resources Canada through the Program of Energy Research and Development and Transport Canada.
文摘A coarse-grained AM50 alloy was used as a model alloy for investigation of constitutive behaviour,Charpy toughness and effect of stress state on deformation and failure of cast Mg alloys.The results provide critical mechanical properties of a cast AM50 alloy for crashworthiness assessment and development of finite element simulation techniques.For cast Mg alloys,the effect of strain rate and temperature is larger on tensile strength than on compressive strength because twinning is more extensive in compression than in tension.The effect of strain rate on compressive strength is negligible because twinning activity of the cast Mg alloy is dominant.The load vs.deflection of Charpy specimens were measured for modelling,and the effect of loading rate and temperature on load of Charpy specimens is very small because part of the specimen is in compression.The equivalent strain to fracture of the cylindrical round notched tension specimen decreases with increasing stress triaxiality;though for the flat-grooved plane strain specimen,the equivalent fracture strain remains constant over the range of stress triaxiality investigated.Because the two different specimen geometries give rise to different Lode angle values,the test results show that the Lode angle parameter is an important parameter for deformation and fracture of Mg alloys.Finite element simulations of loading of the cylindrical notched-tension and Charpy specimens were carried out using a Lode-angle dependent von Mises model,and were found to provide a reasonable description of the load-displacement curves measured in the tests.For the flat-grooved plane strain specimens,the computations under-predicted the force-displacement response measured.
基金supported by the National Natural Science Foundation of China(Grant No.52068014)Key Research&Development Projects in the Guangxi Autonomous Region(Grant No.GUIKE AA20302006)Major Construction Program of the Science and Technological Innovation Base in the Guangxi Autonomous Region(Grant No.2018-242-G02).
文摘The strain-temperature cross-sensitivity problem easily occurs in the engineering strain monitoring of the self-sensing embedded with fiber Bragg grating(FBG)sensors.In this work,a theoretical investigation of the strain-temperature cross-sensitivity has been performed using the temperature reference grating method.To experimentally observe and theoretically verify the problem,the substrate materials,the preloading technique,and the FBG initial central wavelength were taken as main parameters.And a series of sensitivity coefficients calibration tests and temperature compensation tests have been designed and carried out.It was found that when the FBG sensors were embedded on different substrates,their coefficients of the temperature sensitivity were significantly changed.Besides,the larger the coefficients of thermal expansion(CTE)of substrates were,the higher the temperature sensitivity coefficients would be.On the other hand,the effect of the preloading technique and FBG initial wavelength was negligible on both the strain monitoring and temperature compensation.In the case of similar substrates,we did not observe any difference between temperature sensitivity coefficients of the temperature compensation FBG with one free end or two free ends.The curves of the force along with temperature were almost overlapped with minor differences(less than 1%)gained by FBG sensors and pressure sensors,which verified the accuracy of the temperature compensation method.We suggest that this work can provide efficient solutions to the strain-temperature cross-sensitivity for engineering strain monitoring with the self-sensing element embedded with FBG sensors.
基金supported by JSPS KAKENHI Grant Numbers 25709032,26630180 and 25007652by research grants from the Iwatani Naoji FoundationSCAT Foundation and the Konica Minolta Science and Technology Foundation.
文摘Optical fibre sensors based on Brillouin scattering have been vigorously studied in the context of structural health monitoring on account of their capacity for distributed strain and temperature measurements.However,real-time distributed strain measurement has been achieved only for two-end-access systems;such systems reduce the degree of freedom in embedding the sensors into structures,and furthermore render the measurement no longer feasible when extremely high loss or breakage occurs at a point along the sensing fibre.Here,we demonstrate real-time distributed measurement with an intrinsically one-end-access reflectometry configuration by using a correlation-domain technique.In this method,the Brillouin gain spectrum is obtained at high speed using a voltage-controlled oscillator,and the Brillouin frequency shift is converted into a phase delay of a synchronous sinusoidal waveform;the phase delay is subsequently converted into a voltage,which can be directly measured.When a single-point measurement is performed at an arbitrary position,a strain sampling rate of up to 100 kHz is experimentally verified by detecting locally applied dynamic strain at 1 kHz.When distributed measurements are performed at 100 points with 10 times averaging,a repetition rate of 100 Hz is verified by tracking a mechanical wave propagating along the fibre.Some drawbacks of this ultrahigh-speed configuration,including the reduced measurement accuracy,lowered spatial resolution and limited strain dynamic range,are also discussed.
文摘The development of two simple methods for wavelength-optical intensity modulation techniques for fiber Bragg grating (FBG) sensors is presented. The performance is evaluated by measuring the strain and temperature. The first method consists of a narrow band source, an optical circulator, an FBG; and a power meter. The source and Bragg reflected signal from the FBG need to be matched to get linear results with good power levels. The source spectral power levels are very critical in this study. The power reflected from a matched reference FBG is fed into the measuring FBG in the second method. Since the FBGs are matched, the entire power is reflected back initially. During the measurement, the change in the measurand causes the reflected power from the sensing FBG to vary. A costly high resolution spectrum analyzer is required only during the characterization of the FBG and source. The performances of two interrogators are compared by measuring the strain and temperature. In the second method, the strain measurements can be made insensitive to the temperature variation by selecting a source with a flat spectrum at the measurement range. Highlights of these methods are the portability, cost effectiveness and better resolution.