The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-con...The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-concentration in the core and with a H2-1oading treatment. In experiments, the FBGs were subjected to y-radiation exposures using a Co6~ source at a dose-rate of 25 Gy/min up to a total dose of 10.5 kGy. The GeO defect in fiber absorbs photons to form a GeE' defect; the interaction with H2 is a probable reason for the y-radiation sensitivity of gratings written in hydrogen loaded fibres, The effect mechanism of radiation on the strain sensitivity coefficient is similar to that of radiation on the temperature sensitivity coefficient. Radiation affects the effective index neff, which results in the change of the thermo-optic coefficient and the strain-optic coefficient. Irradiation can change the strain sensitivity coefficient of FBGs by 1.48%-2.71%, as well as changing the Bragg wavelength shift (BWS) by 22 pm-25 pm under a total dose of 10.5 kGy. Our research demonstrates that the effect of irradiation on the strain sensitivity coefficient of FBG is small and that strain sensing FBGs can work well in the radiation environment.展开更多
The coefficient of strain resistance for metals,solid solutions and ordering alloys in annealing state decreases,while K increases in cold working state.The value K of pure metals and solid solutions invaraibly decrea...The coefficient of strain resistance for metals,solid solutions and ordering alloys in annealing state decreases,while K increases in cold working state.The value K of pure metals and solid solutions invaraibly decreases with temperature increass.The main factors influencing the coefHcient of strain resistance are crystal defect,dispersion and degree of atomic arrangement.展开更多
In order to characterize the plastic state of a deformed material, an indentation method to determine the plastic equation of state(PES) was developed. The work-hardening coefficient and the strain rate sensitivity co...In order to characterize the plastic state of a deformed material, an indentation method to determine the plastic equation of state(PES) was developed. The work-hardening coefficient and the strain rate sensitivity coefficient of the plastic mechanic equation of state were determined by two kinds of indentation tests respectively. Therefore, the PES of materials under deformation can be obtained, and the plastic state of materials can be determined.展开更多
An indentation method for determining the plastic mechanical equation of state (PES) was studied. The constant loading rate and constant loading rate/load indentation tests were carried out. The method for determinin...An indentation method for determining the plastic mechanical equation of state (PES) was studied. The constant loading rate and constant loading rate/load indentation tests were carried out. The method for determining the work-hardening coefficient and the strain rate sensitivity coefficient of PES were discussed in detail. 304 stainless steel hot-treated at 1100°C was used to verify the method. The work-hardening coefficient and strain rate sensitivity coefficient of 304 stainless steel were respectively determined as 0.30 and 0.015. These values are very close to those achieved by tensile tests. From the establishment of the PES of 304 stainless steel it is shown that the PES obtained by the indentation method is easier than that by the tensile test.展开更多
New lead-free piezoceramic nanocomposites of Boron Sodium Gadolinium Niobate(BNGN),with general formula(1-x)B_(0.5)Na_(0.5)GdO3xB_(0.5)Na_(0.5)NbO_(3),exhibiting a Morphotropic Phase Boundary(MPB),have been synthesiz...New lead-free piezoceramic nanocomposites of Boron Sodium Gadolinium Niobate(BNGN),with general formula(1-x)B_(0.5)Na_(0.5)GdO3xB_(0.5)Na_(0.5)NbO_(3),exhibiting a Morphotropic Phase Boundary(MPB),have been synthesized following hydrothermal method followed by solid state sintering.The occurrence of MPB at the composition with x=0.55,at which rhombohedral and monoclinic phases are found to coexist,has been confirmed using powder XRD.This accounts for the occurrence of large remnant polarization when the sintered ceramic pellets are subjected to electric poling at 2KV/mm.Uniform microstructure of various compositions is confirmed by SEM imaging.Dielectric and piezoelectric properties of the samples are found to be comparable to those of commercial grade PZT.At the MPB,the d_(33)coefficient is found to be 556 pC/N,which is close to that of commercial grade PZT,which makes BNGN a promising material to substitute lead containing PZT in the near future.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61007040)
文摘The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-concentration in the core and with a H2-1oading treatment. In experiments, the FBGs were subjected to y-radiation exposures using a Co6~ source at a dose-rate of 25 Gy/min up to a total dose of 10.5 kGy. The GeO defect in fiber absorbs photons to form a GeE' defect; the interaction with H2 is a probable reason for the y-radiation sensitivity of gratings written in hydrogen loaded fibres, The effect mechanism of radiation on the strain sensitivity coefficient is similar to that of radiation on the temperature sensitivity coefficient. Radiation affects the effective index neff, which results in the change of the thermo-optic coefficient and the strain-optic coefficient. Irradiation can change the strain sensitivity coefficient of FBGs by 1.48%-2.71%, as well as changing the Bragg wavelength shift (BWS) by 22 pm-25 pm under a total dose of 10.5 kGy. Our research demonstrates that the effect of irradiation on the strain sensitivity coefficient of FBG is small and that strain sensing FBGs can work well in the radiation environment.
文摘The coefficient of strain resistance for metals,solid solutions and ordering alloys in annealing state decreases,while K increases in cold working state.The value K of pure metals and solid solutions invaraibly decreases with temperature increass.The main factors influencing the coefHcient of strain resistance are crystal defect,dispersion and degree of atomic arrangement.
文摘In order to characterize the plastic state of a deformed material, an indentation method to determine the plastic equation of state(PES) was developed. The work-hardening coefficient and the strain rate sensitivity coefficient of the plastic mechanic equation of state were determined by two kinds of indentation tests respectively. Therefore, the PES of materials under deformation can be obtained, and the plastic state of materials can be determined.
文摘An indentation method for determining the plastic mechanical equation of state (PES) was studied. The constant loading rate and constant loading rate/load indentation tests were carried out. The method for determining the work-hardening coefficient and the strain rate sensitivity coefficient of PES were discussed in detail. 304 stainless steel hot-treated at 1100°C was used to verify the method. The work-hardening coefficient and strain rate sensitivity coefficient of 304 stainless steel were respectively determined as 0.30 and 0.015. These values are very close to those achieved by tensile tests. From the establishment of the PES of 304 stainless steel it is shown that the PES obtained by the indentation method is easier than that by the tensile test.
文摘New lead-free piezoceramic nanocomposites of Boron Sodium Gadolinium Niobate(BNGN),with general formula(1-x)B_(0.5)Na_(0.5)GdO3xB_(0.5)Na_(0.5)NbO_(3),exhibiting a Morphotropic Phase Boundary(MPB),have been synthesized following hydrothermal method followed by solid state sintering.The occurrence of MPB at the composition with x=0.55,at which rhombohedral and monoclinic phases are found to coexist,has been confirmed using powder XRD.This accounts for the occurrence of large remnant polarization when the sintered ceramic pellets are subjected to electric poling at 2KV/mm.Uniform microstructure of various compositions is confirmed by SEM imaging.Dielectric and piezoelectric properties of the samples are found to be comparable to those of commercial grade PZT.At the MPB,the d_(33)coefficient is found to be 556 pC/N,which is close to that of commercial grade PZT,which makes BNGN a promising material to substitute lead containing PZT in the near future.