Exploring the phase transition of high entropy alloys(HEAs)with multiple major elements is of great importance for understanding the underlying physical mechanisms.Macroscopic martensitic phase tran-sition has been fr...Exploring the phase transition of high entropy alloys(HEAs)with multiple major elements is of great importance for understanding the underlying physical mechanisms.Macroscopic martensitic phase tran-sition has been frequently reported in HEAs,however,nanoscale microstructural phase evolution has not been investigated to the same extent.Herein,we have prepared the Ti_(33)Nb_(15)Zr_(25)Hf_(25)O_(2)HEA and investi-gated the strain glass transition and its associated properties using dynamic mechanical analysis and mi-crostructure characterization.We have found that the elastic modulus in Ti_(33)Nb_(15)Zr_(25)Hf_(25)O_(2)HEA deviates from Wachtman’s equation and observed the Elinvar effect in the form of temperature-independent mod-ulus in the temperature range from 150 K to 450 K and frequency-dependence modulus around 220 K.The strain glass transition has been evidenced in Ti_(33)Nb_(15)Zr_(25)Hf_(25)O_(2)HEA by the formation and growth of nano-sized domains during in-situ transmission electron microscopy(TEM)cooling,and substantiated by the broken ergodicity during zero-field-cooling/field-cooling.The strain glass transition is believed to account for the Elinvar effect,where the modulus hardening of nano-sized domains compensates dynam-ically with the modulus softening of the transformable matrix.展开更多
An abnormal phenomenon was investigated in Ti<sub>44</sub>Ni<sub>51</sub>Nb<sub>5</sub> alloy which exhibits an absence of martensite transformation and a negative temperature depen...An abnormal phenomenon was investigated in Ti<sub>44</sub>Ni<sub>51</sub>Nb<sub>5</sub> alloy which exhibits an absence of martensite transformation and a negative temperature dependence of electrical resistivity with the temperature decreasing. X-ray diffraction (XRD) analysis shows the matrix phase keeps a B2 structure during cooling without a martensite transformation, and dynamic mechanical analysis displays a frequency-dependent AC modulus/loss anomaly at T <sub>g</sub> according to Vogel-Fulcher relation. Simultaneously, transmission electronic microscope (TEM) analysis manifests the superlattice spots at near 1/3 commensurate position, implying an existence of strain nanodomains with an R-like structure. And above experiment results provide evidence for the “strain glass” transition in defect-containing ferroelastic Ti<sub>44</sub>Ni<sub>51</sub>Nb<sub>5</sub> alloy.展开更多
基金supported by the National Key Research and De-velopment Program of China(No.2022YFB3800052)the National Natural Science Foundation of China(Nos.12002013,51971009,and 51831006)+1 种基金the Zhejiang Natural Science Foundation(No.LZ23E010004).H.L.Hou also acknowledges the support of the Fundamental Research Funds for the Central Universities(No.501LKQB2020105028)the Opening Fund of the State Key Lab-oratory of Nonlinear Mechanics.
文摘Exploring the phase transition of high entropy alloys(HEAs)with multiple major elements is of great importance for understanding the underlying physical mechanisms.Macroscopic martensitic phase tran-sition has been frequently reported in HEAs,however,nanoscale microstructural phase evolution has not been investigated to the same extent.Herein,we have prepared the Ti_(33)Nb_(15)Zr_(25)Hf_(25)O_(2)HEA and investi-gated the strain glass transition and its associated properties using dynamic mechanical analysis and mi-crostructure characterization.We have found that the elastic modulus in Ti_(33)Nb_(15)Zr_(25)Hf_(25)O_(2)HEA deviates from Wachtman’s equation and observed the Elinvar effect in the form of temperature-independent mod-ulus in the temperature range from 150 K to 450 K and frequency-dependence modulus around 220 K.The strain glass transition has been evidenced in Ti_(33)Nb_(15)Zr_(25)Hf_(25)O_(2)HEA by the formation and growth of nano-sized domains during in-situ transmission electron microscopy(TEM)cooling,and substantiated by the broken ergodicity during zero-field-cooling/field-cooling.The strain glass transition is believed to account for the Elinvar effect,where the modulus hardening of nano-sized domains compensates dynam-ically with the modulus softening of the transformable matrix.
基金financially supported by the National Natural Science Foundation of China(No.51271010)
文摘An abnormal phenomenon was investigated in Ti<sub>44</sub>Ni<sub>51</sub>Nb<sub>5</sub> alloy which exhibits an absence of martensite transformation and a negative temperature dependence of electrical resistivity with the temperature decreasing. X-ray diffraction (XRD) analysis shows the matrix phase keeps a B2 structure during cooling without a martensite transformation, and dynamic mechanical analysis displays a frequency-dependent AC modulus/loss anomaly at T <sub>g</sub> according to Vogel-Fulcher relation. Simultaneously, transmission electronic microscope (TEM) analysis manifests the superlattice spots at near 1/3 commensurate position, implying an existence of strain nanodomains with an R-like structure. And above experiment results provide evidence for the “strain glass” transition in defect-containing ferroelastic Ti<sub>44</sub>Ni<sub>51</sub>Nb<sub>5</sub> alloy.