The growth of high-quality germanium tin(Ge_(1–y)Sn_(y))binary alloys on a Si substrate using chemical vapor deposition(CVD)techniques holds immense potential for advancing electronics and optoelectronics application...The growth of high-quality germanium tin(Ge_(1–y)Sn_(y))binary alloys on a Si substrate using chemical vapor deposition(CVD)techniques holds immense potential for advancing electronics and optoelectronics applications,including the development of efficient and low-cost mid-infrared detectors and light sources.However,achieving precise control over the Sn concentration and strain relaxation of the Ge_(1–y)Sn_(y)epilayer,which directly influence its optical and electrical properties,remain a significant challenge.In this research,the effect of strain relaxation on the growth rate of Ge_(1–y)Sn_(y)epilayers,with Sn concentration>11at.%,is investigated.It is successfully demonstrated that the growth rate slows down by~55%due to strain relaxation after passing its critical thickness,which suggests a reduction in the incorporation of Ge into Ge_(1–y)Sn_(y)growing layers.Despite the increase in Sn concentration as a result of the decrease in the growth rate,it has been found that the Sn incorporation rate into Ge_(1–y)Sn_(y)growing layers has also decreased due to strain relaxation.Such valuable insights could offer a foundation for the development of innovative growth techniques aimed at achieving high-quality Ge_(1–y)Sn_(y)epilayers with tuned Sn concentration and strain relaxation.展开更多
Pure-Ge/Si short period superlattice (SPS) grown by gas source MBE (GSMBE) is studied by photoluminescence spectroscopy and Raman scattering spectroscopy. An abnormal band in photoluminescence is found in an intermedi...Pure-Ge/Si short period superlattice (SPS) grown by gas source MBE (GSMBE) is studied by photoluminescence spectroscopy and Raman scattering spectroscopy. An abnormal band in photoluminescence is found in an intermediate range of Lsi between 1.9 nm-2.9 nm for samples with LGe fixed at 1.5 ml. In contrast to a pure-Ge/Si quantum well, the energy of the band shows red-shift as Lsi increases. Raman scattering shows that Si-Si vibration related Raman shift reaches a minimum for samples with strongest PL intensity of the abnormal band. It is therefore concluded that the abnormal band is related with strain relaxation process.展开更多
The strain relaxation of an A1GaN barrier layer may be influenced by a thin cap layer above, and affects the transport properties of A1GaN/GaN heterostructures. Compared with the slight strain relaxation found in A1Ga...The strain relaxation of an A1GaN barrier layer may be influenced by a thin cap layer above, and affects the transport properties of A1GaN/GaN heterostructures. Compared with the slight strain relaxation found in A1GaN barrier layer without cap layer, it is found that a thin cap layer can induce considerable changes of strain state in the A1GaN barrier layer. The degree of relaxation of the A1GaN layer significantly influences the transport properties of the two-dimensional electron gas (2DEG) in A1GaN/GaN heterostructures. It is observed that electron mobility decreases with the increasing degree of relaxation of the A1GaN barrier, which is believed to be the main cause of the deterioration of crystalline quality and morphology on the A1GaN/GaN interface. On the other hand, both GaN and A1N cap layers lead to a decrease in 2DEC density. The reduction of 2DEG caused by the GaN cap layer may be attributed to the additional negative polarization charges formed at the interface between CaN and A1GaN, while the reduction of the piezoelectric effect in the A1GaN layer results in the decrease of 2DEC density in the case of A1N cap layer.展开更多
InGaN/GaN epilayers, which are grown on sapphire substrates by the metal-organic chemical-vapour deposition (MOCVD) method, are formed into nanorod arrays using inductively coupled plasma etching via self-assembled ...InGaN/GaN epilayers, which are grown on sapphire substrates by the metal-organic chemical-vapour deposition (MOCVD) method, are formed into nanorod arrays using inductively coupled plasma etching via self-assembled Ni nanomasks. The formation of nanorod arrays eliminates the tilt of the InGaN (0002) crystallographic plane with respect to its GaN bulk layer. Photoluminescence results show an apparent S-shaped dependence on temperature. The light extraction efficiency and intensity of photoluminescence emission at low temperature of less than 30 K for the nanorod arrays are enhanced by the large surface area, which increases the quenching effect because of the high density of surface states for the temperature above 30 K. Additionally, a red-shift for the InGaN/GaN nanorod arrays is observed due to the strain relaxation, which is confirmed by reciprocal space mapping measurements.展开更多
This paper presents a detailed analysis of the dependence of degree of strain relaxation of the self-organized InAs/GaAs quantum dot on the geometrical parameters. Differently shaped quantum dots arranged with differe...This paper presents a detailed analysis of the dependence of degree of strain relaxation of the self-organized InAs/GaAs quantum dot on the geometrical parameters. Differently shaped quantum dots arranged with different transverse periods are simulated in this analysis. It investigates the total residual strain energy that stored in the quantum dot and the substrate for all kinds of quantum dots with the same volume, as well as the dependence on both the aspect ratio and transverse period. The calculated results show that when the transverse period is larger than two times the base of the quantum dots, the influence of transverse periods can be ignored. The larger aspect ratio will lead more efficient strain relaxation. The larger angle between the faces and the substrate will lead more efficient strain relaxation. The obtained results can help to understand the shape transition mechanism during the epitaxial growth from the viewpoint of energy, because the strain relaxation is the main driving force of the quantum dot's self-organization.展开更多
Bandgap-tunable mixed-halide perovskite materials have attracted considerable interest because of their indispensability as top counterparts in tandem solar cells.However,the soft and disordered lattice always suffers...Bandgap-tunable mixed-halide perovskite materials have attracted considerable interest because of their indispensability as top counterparts in tandem solar cells.However,the soft and disordered lattice always suffers from severe phase segregation under illumination,which is particularly susceptible to residual lattice strain.Herein,we report a strain regulation strategy by using alkenamides terminated Ti_(3)C_(2)T_(x)MXenes as an additive into perovskite precursor.Apart from the role of a template for grain growth to obtain high-quality films,the stretchable alkyl chain promotes lattice shrinkage or expansion to form an elastic grain boundary to eliminate the spatially distributed stain and shut down ion migration channels.As a result,the all-inorganic perovskite solar cells based on CsPbIBr_(2)and CsPbI_(2)Br halides achieve prolonged device stability under harsh conditions and the best power conversion efficiencies up to 11.06%and 14.30%,respectively.展开更多
The effects of strain relaxation of AlGaN barrier layer on the conduction band profile,electron concentration and two-dimensional gas(2DEG)sheet charge density in a high Al-content AlGaN/GaN high electron mobility tra...The effects of strain relaxation of AlGaN barrier layer on the conduction band profile,electron concentration and two-dimensional gas(2DEG)sheet charge density in a high Al-content AlGaN/GaN high electron mobility transistor(HEMT)are calculated by self-consistently solving Poisson’s and Schr?dinger’s equations.The effect of strain re-laxation on dc I-V characteristics of Al_(x)Ga_(1-x)N/GaN HEMT is obtained by developing a nonlinear charge-control model that describes the accurate relation of 2DEG sheet charge density and gate voltage.The model predicts a highest 2DEG sheet charge density of 2.42×10^(13)cm^(-2)and maximum saturation current of 2482.8 mA/mm at a gate bias of 2 V for 0.7μm Al_(0.5)0Ga_(0.50)N/GaN HEMT with strain relaxation r=0 and 1.49×10^(13)cm^(-2)and 1149.7 mA/mm with strain relaxation r=1.The comparison between simulations and physical measurements shows a good agreement.Results show that the effect of strain relaxation must be considered when analyzing the characteristics of high Al-content AlGaN/GaN HEMT theoretically,and the performance of the devices is improved by decreasing the strain relaxation of AlGaN barrier layer.展开更多
We present the specific ab-initio calculations that detail the variations of perovskite BaZrO3 caused by in-plane strain. Specifically, the internal relaxation, which was not captured in the widely used biaxial strain...We present the specific ab-initio calculations that detail the variations of perovskite BaZrO3 caused by in-plane strain. Specifically, the internal relaxation, which was not captured in the widely used biaxial strain model, was included in a complementary manner to lattice relaxation. Density functional theory as well as a hybrid functional method based on a plane wave basis set was employed to calculate the lattice structure, elastic constants, electronic properties and optical properties of perovskite BaZrO3. The lattice parameter c exhibited a clear linear dependence on the imposed in-plane strain, but the Poisson's ratio caused by internal relaxation was smaller than the elastic deformation, indicating an "inelastic" or "plastic" relaxation manner caused by the introduction of internal relaxation. As a result, the related electronic and optical properties of perovskite BaZrO3 were also strongly affected by the in-plane strain, which revealed an effective way to adjust the properties of perovskite BaZrO3 via internal relaxation.展开更多
Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce...Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days.展开更多
One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual...One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual stress reduction as the silicon over-layer thickness decreases for the SOI substrates. Strain relaxation in the SiC epilayer is explained by force balance approach and near coincidence lattice model.展开更多
A novel MBE-grown method using low-temperature (L T) Si technology is introduced into the fabrication of strained Si channel heter ojunction pMOSFETs.By sandwiching a low-temperature Si layer between Si buffer and S...A novel MBE-grown method using low-temperature (L T) Si technology is introduced into the fabrication of strained Si channel heter ojunction pMOSFETs.By sandwiching a low-temperature Si layer between Si buffer and SiGe layer,the strain relaxation degree of the SiGe layer is increased.At th e same time,the threading dislocations (TDs) are hold back from propagating to t he surface.As a result,the thickness of relaxed Si 1-xGe x epitax y layer on bulk silicon is reduced from several micrometers using UHVCVD to less than 400nm(x=0.2),which will improve the heat dissipation of devices.AFM t ests of strained Si surface show RMS is less than 1.02nm.The DC characters meas ured by HP 4155B indicate that hole mobility μ p has 25% of maximum enhanc ement compared to that of bulk Si pMOSFET processed similarly.展开更多
Strain-relaxed SiGe virtual substrates are of great importance for fabricating strained Si materials. Instead of using graded buffer method to obtain fully relaxed SiGe film, in this study a new method to obtain relax...Strain-relaxed SiGe virtual substrates are of great importance for fabricating strained Si materials. Instead of using graded buffer method to obtain fully relaxed SiGe film, in this study a new method to obtain relaxed SiGe film and strained Si film with much thinner SiGe film was proposed. Almost fully relaxed thin SiGe buffer layer was obtained by Si/SiGe/Si multi-structure oxidation and the SiO2 layer removing before SiGe regrowth. Raman spectroscopy analysis indicates that the regrown SiGe film has a strain relaxation ratio of about 93% while the Si cap layer has a strain of 0.63%. AFM shows good surface roughness. This new method is proved to be a useful approach to fabricate thin relaxed epilayers and strain Si films.展开更多
In this study, the effect of reduced graphene oxide(rGO) on interconnected Co_3O_4 nanosheets and the improved supercapacitive behaviors is reported. By optimizing the experimental parameters, we achieved a specific c...In this study, the effect of reduced graphene oxide(rGO) on interconnected Co_3O_4 nanosheets and the improved supercapacitive behaviors is reported. By optimizing the experimental parameters, we achieved a specific capacitance of ~1016.4 F g^(-1) for the Co_3O_4/rGO/NF(nickel foam) system at a current density of 1 A g^(-1). However, the Co_3O_4/NF structure without rGO only delivers a specific capacitance of ~520.0 F g^(-1)at the same current density. The stability test demonstrates that Co_3O_4/rGO/NF retains ~95.5% of the initial capacitance value even after 3000 charge–discharge cycles at a high current density of 7 A g^(-1). Further investigation reveals that capacitance improvement for the Co_3O_4/rGO/NF structure is mainly because of a higher specific surface area(~87.8 m^2g^(-1))and a more optimal mesoporous size(4–15 nm) compared to the corresponding values of 67.1 m^2g^(-1) and 6–25 nm,respectively, for the Co_3O_4/NF structure. rGO and the thinner Co_3O_4 nanosheets benefit from the strain relaxation during the charge and discharge processes, improving the cycling stability of Co_3O_4/rGO/NF.展开更多
The high power GaN-based blue light emitting diode(LED) on an 80-μm-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition(MOCVD), hydride vapor-pha...The high power GaN-based blue light emitting diode(LED) on an 80-μm-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition(MOCVD), hydride vapor-phase epitaxial(HVPE), and laser lift-off(LLO). Its advantages are demonstrated from material quality and chip processing. It is investigated by high resolution X-ray diffraction(XRD), high resolution transmission electron microscope(HRTEM), Rutherford back-scattering(RBS), photoluminescence, current-voltage and light output-current measurements. The width of(0002) reflection in XRD rocking curve, which reaches 173 for the thick GaN template LED, is less than that for the conventional one, which reaches 258. The HRTEM images show that the multiple quantum wells(MQWs) in 80-μmthick GaN template LED have a generally higher crystal quality. The light output at 350 mA from the thick GaN template LED is doubled compared to traditional LEDs and the forward bias is also substantially reduced. The high performance of 80-μm-thick GaN template LED depends on the high crystal quality. However, although the intensity of MQWs emission in PL spectra is doubled, both the wavelength and the width of the emission from thick GaN template LED are increased. This is due to the strain relaxation on the surface of 80-μm-thick GaN template, which changes the strain in InGaN QWs and leads to InGaN phase separation.展开更多
Deep-level traps at the buried interface of perovskite and energy mismatch problems between the perovskite layer and heterogeneous interfaces restrict the development of ideal homogenized films and efficient perovskit...Deep-level traps at the buried interface of perovskite and energy mismatch problems between the perovskite layer and heterogeneous interfaces restrict the development of ideal homogenized films and efficient perovskite solar cells(PSCs)using the one-step spin-coating method.Here,we strategically employed sparingly soluble germanium iodide as a homogenized bulk in-situ reconstruction inducing material preferentially aggregated at the perovskite buried interface with gradient doping,markedly reducing deep-level traps and withstanding local lattice strain,while minimizing non-radiative recombination losses and enhancing the charge carrier lifetime over 9μs.Furthermore,this gradient doping assisted in modifying the band diagram at the buried interface into a desirable flattened alignment,substantially mitigating the energy loss of charge carriers within perovskite films and improving the carrier extraction equilibrium.As a result,the optimized device achieved a champion power conversion efficiency of 25.24% with a fill factor of up to 84.65%,and the unencapsulated device also demonstrated excellent light stability and humidity stability.This work provides a straightforward and reliable homogenization strategy of perovskite components for obtaining efficient and stable PSCs.展开更多
High quality strain-relaxed thin SiGe virtual substrates have been achieved by combining the misfit strain technique and the point defect technique. The point defects were first injected into the coherently strained S...High quality strain-relaxed thin SiGe virtual substrates have been achieved by combining the misfit strain technique and the point defect technique. The point defects were first injected into the coherently strained SiGe layer through the "inserted Si layer" by argon ion implantation. After thermal annealing, an in- termediate SiGe layer was grown with a strained Si cap layer. The inserted Si layer in the SiGe film serves as the source of the misfit strain and prevents the threading dislocations from propagating into the next epitaxial layer. A strained-SilSiGelinserted-SilSiGe heterostructure was achieved with a threading dislocation density of 1×10^4 cm-2 and a root mean square surface roughness of 0.87 nm. This combined method can effectively fabricate device-quality SiGe virtual substrates with a low threading dislocation density and a smooth surface.展开更多
Mixed tin-ead perovskites suffer from structural instability and rapid tin oxidation;thus,the investigation of their optimal composition ranges is important to address these inherent weaknesses.The critical role of tr...Mixed tin-ead perovskites suffer from structural instability and rapid tin oxidation;thus,the investigation of their optimal composition ranges is important to address these inherent weaknesses.The critical role of triple cations in mixed Sn–Pb iodides is studied by performing a wide range of compositional screenings over mechanochemically synthesized bulk and solution-processed thin films.A ternary phase map of FA(Sn_(0.6)Pb_(0.4))I_(3),MA(Sn_(0.6)Pb_(0.4))I_(3),and Cs(Sn_(0.6)Pb_(0.4))I_(3)is formed,and a promising composition window of(FA_(0.6-x)MA_(0.4)Cs_(x))Sn_(0.6)Pb_(0.4)I_(3)(0≤x≤0.1)is demonstrated through phase,photoluminescence,and stability evaluations.Solar cell performance and chemical stability across the targeted compositional space are investigated,and FA_(0.55)MA_(0.4)Cs_(0.05)Sn_(0.6)Pb_(0.4)I_(3)with strain-relaxed lattices,reduced defect densities,and improved oxidation stability is demonstrated.The inverted perovskite solar cells with the optimal composition demonstrate a power conversion efficiency of over 22%with an open-circuit voltage of 0.867 V,which corresponds to voltage loss of 0.363 V,promising for the development of narrow-bandgap perovskite solar cells.展开更多
The dispersion mechanism in Al0:27Ga0:73N/GaN heterostructure was investigated using frequencydependent capacitance and conductance measurements.It was found that the significant capacitance and conductance dispersi...The dispersion mechanism in Al0:27Ga0:73N/GaN heterostructure was investigated using frequencydependent capacitance and conductance measurements.It was found that the significant capacitance and conductance dispersion occurred primarily for measurement frequency beyond 100 kHz before the channel cutoff at the interface,suggesting that the vertical polarization electrical field under the gate metal should be closely related with the observed dispersive behavior.According to the Schottky-Read-Hall model,a traditional trapping mechanism cannot be used to explain our result.Instead,a piezoelectric polarization strain relaxation model was adopted to interpret the dispersion.By fitting the obtained capacitance data,the corresponding characteristic time and charge density were determined 10..8 s and 5.26 1012 cm..2 respectively,in good agreement with the conductance data and theoretical prediction.展开更多
文摘The growth of high-quality germanium tin(Ge_(1–y)Sn_(y))binary alloys on a Si substrate using chemical vapor deposition(CVD)techniques holds immense potential for advancing electronics and optoelectronics applications,including the development of efficient and low-cost mid-infrared detectors and light sources.However,achieving precise control over the Sn concentration and strain relaxation of the Ge_(1–y)Sn_(y)epilayer,which directly influence its optical and electrical properties,remain a significant challenge.In this research,the effect of strain relaxation on the growth rate of Ge_(1–y)Sn_(y)epilayers,with Sn concentration>11at.%,is investigated.It is successfully demonstrated that the growth rate slows down by~55%due to strain relaxation after passing its critical thickness,which suggests a reduction in the incorporation of Ge into Ge_(1–y)Sn_(y)growing layers.Despite the increase in Sn concentration as a result of the decrease in the growth rate,it has been found that the Sn incorporation rate into Ge_(1–y)Sn_(y)growing layers has also decreased due to strain relaxation.Such valuable insights could offer a foundation for the development of innovative growth techniques aimed at achieving high-quality Ge_(1–y)Sn_(y)epilayers with tuned Sn concentration and strain relaxation.
文摘Pure-Ge/Si short period superlattice (SPS) grown by gas source MBE (GSMBE) is studied by photoluminescence spectroscopy and Raman scattering spectroscopy. An abnormal band in photoluminescence is found in an intermediate range of Lsi between 1.9 nm-2.9 nm for samples with LGe fixed at 1.5 ml. In contrast to a pure-Ge/Si quantum well, the energy of the band shows red-shift as Lsi increases. Raman scattering shows that Si-Si vibration related Raman shift reaches a minimum for samples with strongest PL intensity of the abnormal band. It is therefore concluded that the abnormal band is related with strain relaxation process.
基金Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No.2008ZX01002-002)the Major Program and the Key Program of National Natural Science Foundation of China (Grant Nos.60890191 and 60736033)
文摘The strain relaxation of an A1GaN barrier layer may be influenced by a thin cap layer above, and affects the transport properties of A1GaN/GaN heterostructures. Compared with the slight strain relaxation found in A1GaN barrier layer without cap layer, it is found that a thin cap layer can induce considerable changes of strain state in the A1GaN barrier layer. The degree of relaxation of the A1GaN layer significantly influences the transport properties of the two-dimensional electron gas (2DEG) in A1GaN/GaN heterostructures. It is observed that electron mobility decreases with the increasing degree of relaxation of the A1GaN barrier, which is believed to be the main cause of the deterioration of crystalline quality and morphology on the A1GaN/GaN interface. On the other hand, both GaN and A1N cap layers lead to a decrease in 2DEC density. The reduction of 2DEG caused by the GaN cap layer may be attributed to the additional negative polarization charges formed at the interface between CaN and A1GaN, while the reduction of the piezoelectric effect in the A1GaN layer results in the decrease of 2DEC density in the case of A1N cap layer.
基金Project supported by the SONY-SINANO Joint Project (Grant No. Y1AAQ11001)the Suzhou Solar Cell Research Project,China (Grant No. ZXJ0903)+1 种基金the International S & T Cooperation Projects (SINO-Japan)the Science Fund of the Ministry of Science and Technology of the People’s Republic of China (Grant No. 2010DFA22770)
文摘InGaN/GaN epilayers, which are grown on sapphire substrates by the metal-organic chemical-vapour deposition (MOCVD) method, are formed into nanorod arrays using inductively coupled plasma etching via self-assembled Ni nanomasks. The formation of nanorod arrays eliminates the tilt of the InGaN (0002) crystallographic plane with respect to its GaN bulk layer. Photoluminescence results show an apparent S-shaped dependence on temperature. The light extraction efficiency and intensity of photoluminescence emission at low temperature of less than 30 K for the nanorod arrays are enhanced by the large surface area, which increases the quenching effect because of the high density of surface states for the temperature above 30 K. Additionally, a red-shift for the InGaN/GaN nanorod arrays is observed due to the strain relaxation, which is confirmed by reciprocal space mapping measurements.
基金supported by the National "973" Basic Research Program of China (Grant No 2003CB314901)the National NaturalScience Foundation of China (Grant No 60644004)the 111 Project of China (High School Innovation and Introducing Intellect Project of China) (Grant No B07005)
文摘This paper presents a detailed analysis of the dependence of degree of strain relaxation of the self-organized InAs/GaAs quantum dot on the geometrical parameters. Differently shaped quantum dots arranged with different transverse periods are simulated in this analysis. It investigates the total residual strain energy that stored in the quantum dot and the substrate for all kinds of quantum dots with the same volume, as well as the dependence on both the aspect ratio and transverse period. The calculated results show that when the transverse period is larger than two times the base of the quantum dots, the influence of transverse periods can be ignored. The larger aspect ratio will lead more efficient strain relaxation. The larger angle between the faces and the substrate will lead more efficient strain relaxation. The obtained results can help to understand the shape transition mechanism during the epitaxial growth from the viewpoint of energy, because the strain relaxation is the main driving force of the quantum dot's self-organization.
基金National Natural Science Foundation of China,Grant/Award Numbers:22109053,22179051,62104136Special Fund of Taishan Scholar Program of Shandong Province,Grant/Award Number:tsqnz20221141+3 种基金National Key Research and Development Program of China,Grant/Award Number:2021YFE0111000Spring City Plan:the High-level Talent Promotion and Training Project of Kunming,Grant/Award Number:2022SCP005Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110548Guangzhou Science and Technology Planning Project,Grant/Award Number:202102020775。
文摘Bandgap-tunable mixed-halide perovskite materials have attracted considerable interest because of their indispensability as top counterparts in tandem solar cells.However,the soft and disordered lattice always suffers from severe phase segregation under illumination,which is particularly susceptible to residual lattice strain.Herein,we report a strain regulation strategy by using alkenamides terminated Ti_(3)C_(2)T_(x)MXenes as an additive into perovskite precursor.Apart from the role of a template for grain growth to obtain high-quality films,the stretchable alkyl chain promotes lattice shrinkage or expansion to form an elastic grain boundary to eliminate the spatially distributed stain and shut down ion migration channels.As a result,the all-inorganic perovskite solar cells based on CsPbIBr_(2)and CsPbI_(2)Br halides achieve prolonged device stability under harsh conditions and the best power conversion efficiencies up to 11.06%and 14.30%,respectively.
基金This work was supported by the National Key Basic Research and Development Program(Grant No.51327020301)the National Defense Key Pre-Research.Program(Grant No.41308060106)
文摘The effects of strain relaxation of AlGaN barrier layer on the conduction band profile,electron concentration and two-dimensional gas(2DEG)sheet charge density in a high Al-content AlGaN/GaN high electron mobility transistor(HEMT)are calculated by self-consistently solving Poisson’s and Schr?dinger’s equations.The effect of strain re-laxation on dc I-V characteristics of Al_(x)Ga_(1-x)N/GaN HEMT is obtained by developing a nonlinear charge-control model that describes the accurate relation of 2DEG sheet charge density and gate voltage.The model predicts a highest 2DEG sheet charge density of 2.42×10^(13)cm^(-2)and maximum saturation current of 2482.8 mA/mm at a gate bias of 2 V for 0.7μm Al_(0.5)0Ga_(0.50)N/GaN HEMT with strain relaxation r=0 and 1.49×10^(13)cm^(-2)and 1149.7 mA/mm with strain relaxation r=1.The comparison between simulations and physical measurements shows a good agreement.Results show that the effect of strain relaxation must be considered when analyzing the characteristics of high Al-content AlGaN/GaN HEMT theoretically,and the performance of the devices is improved by decreasing the strain relaxation of AlGaN barrier layer.
基金Funded by the National Natural Science Foundation of China(No.51502179)the Colleges and Universities in Hebei Province Science and Technology Research Project(No.YQ2014033)the Hebei Key Discipline Construction Project(B2012210004 and E2013210038)
文摘We present the specific ab-initio calculations that detail the variations of perovskite BaZrO3 caused by in-plane strain. Specifically, the internal relaxation, which was not captured in the widely used biaxial strain model, was included in a complementary manner to lattice relaxation. Density functional theory as well as a hybrid functional method based on a plane wave basis set was employed to calculate the lattice structure, elastic constants, electronic properties and optical properties of perovskite BaZrO3. The lattice parameter c exhibited a clear linear dependence on the imposed in-plane strain, but the Poisson's ratio caused by internal relaxation was smaller than the elastic deformation, indicating an "inelastic" or "plastic" relaxation manner caused by the introduction of internal relaxation. As a result, the related electronic and optical properties of perovskite BaZrO3 were also strongly affected by the in-plane strain, which revealed an effective way to adjust the properties of perovskite BaZrO3 via internal relaxation.
基金Qingdao Postdoctoral Funding Program,Grant/Award Number:QDBSH20220201002National Key Research and Development Program of China,Grant/Award Number:2021YFE0111000+1 种基金Project of Shandong Province Higher Educational Young Innovative Team,Grant/Award Number:2022KJ218National Natural Science Foundation of China,Grant/Award Numbers:62104136,22179051,22109053。
文摘Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days.
文摘One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual stress reduction as the silicon over-layer thickness decreases for the SOI substrates. Strain relaxation in the SiC epilayer is explained by force balance approach and near coincidence lattice model.
文摘A novel MBE-grown method using low-temperature (L T) Si technology is introduced into the fabrication of strained Si channel heter ojunction pMOSFETs.By sandwiching a low-temperature Si layer between Si buffer and SiGe layer,the strain relaxation degree of the SiGe layer is increased.At th e same time,the threading dislocations (TDs) are hold back from propagating to t he surface.As a result,the thickness of relaxed Si 1-xGe x epitax y layer on bulk silicon is reduced from several micrometers using UHVCVD to less than 400nm(x=0.2),which will improve the heat dissipation of devices.AFM t ests of strained Si surface show RMS is less than 1.02nm.The DC characters meas ured by HP 4155B indicate that hole mobility μ p has 25% of maximum enhanc ement compared to that of bulk Si pMOSFET processed similarly.
基金This project was financially supported by the National Natural Science Foundation of China(No.60476017).
文摘Strain-relaxed SiGe virtual substrates are of great importance for fabricating strained Si materials. Instead of using graded buffer method to obtain fully relaxed SiGe film, in this study a new method to obtain relaxed SiGe film and strained Si film with much thinner SiGe film was proposed. Almost fully relaxed thin SiGe buffer layer was obtained by Si/SiGe/Si multi-structure oxidation and the SiO2 layer removing before SiGe regrowth. Raman spectroscopy analysis indicates that the regrown SiGe film has a strain relaxation ratio of about 93% while the Si cap layer has a strain of 0.63%. AFM shows good surface roughness. This new method is proved to be a useful approach to fabricate thin relaxed epilayers and strain Si films.
基金financially supported from the National Natural Science Foundation of China (Grant Nos.: 61376068, 11304132, 11304133, and 11405144)the Specialized Research Fund of the Doctoral Program of Higher Education (Grant Nos.: 20120211120003 and 20130211120009)the Fundamental Research Funds for the Central Universities (Grant Nos.: lzujbky2013-36 and lzujbky-2014-30)
文摘In this study, the effect of reduced graphene oxide(rGO) on interconnected Co_3O_4 nanosheets and the improved supercapacitive behaviors is reported. By optimizing the experimental parameters, we achieved a specific capacitance of ~1016.4 F g^(-1) for the Co_3O_4/rGO/NF(nickel foam) system at a current density of 1 A g^(-1). However, the Co_3O_4/NF structure without rGO only delivers a specific capacitance of ~520.0 F g^(-1)at the same current density. The stability test demonstrates that Co_3O_4/rGO/NF retains ~95.5% of the initial capacitance value even after 3000 charge–discharge cycles at a high current density of 7 A g^(-1). Further investigation reveals that capacitance improvement for the Co_3O_4/rGO/NF structure is mainly because of a higher specific surface area(~87.8 m^2g^(-1))and a more optimal mesoporous size(4–15 nm) compared to the corresponding values of 67.1 m^2g^(-1) and 6–25 nm,respectively, for the Co_3O_4/NF structure. rGO and the thinner Co_3O_4 nanosheets benefit from the strain relaxation during the charge and discharge processes, improving the cycling stability of Co_3O_4/rGO/NF.
基金Project supported by the National Basic Research Foundation of China (Grant Nos. TG2011CB301905 and TG2012CB619304) and the National Natural Science Foundation of China (Grant Nos. 60876063 and 61076012).
文摘The high power GaN-based blue light emitting diode(LED) on an 80-μm-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition(MOCVD), hydride vapor-phase epitaxial(HVPE), and laser lift-off(LLO). Its advantages are demonstrated from material quality and chip processing. It is investigated by high resolution X-ray diffraction(XRD), high resolution transmission electron microscope(HRTEM), Rutherford back-scattering(RBS), photoluminescence, current-voltage and light output-current measurements. The width of(0002) reflection in XRD rocking curve, which reaches 173 for the thick GaN template LED, is less than that for the conventional one, which reaches 258. The HRTEM images show that the multiple quantum wells(MQWs) in 80-μmthick GaN template LED have a generally higher crystal quality. The light output at 350 mA from the thick GaN template LED is doubled compared to traditional LEDs and the forward bias is also substantially reduced. The high performance of 80-μm-thick GaN template LED depends on the high crystal quality. However, although the intensity of MQWs emission in PL spectra is doubled, both the wavelength and the width of the emission from thick GaN template LED are increased. This is due to the strain relaxation on the surface of 80-μm-thick GaN template, which changes the strain in InGaN QWs and leads to InGaN phase separation.
基金supported by the National Natural Science Foundation of China(62105292)Shaanxi Fundamental Science Research Project for Mathematics and Physics(22JSY015)+3 种基金Young Talent Fund of Xi’an Association for Science and Technology(959202313020)the Natural Science Foundation of Shaanxi Province(2021GXLH-Z-0 and 2020JZ-02)the project of Innovative Team of Shaanxi Province(2020TD-001)the China Fundamental Research Funds for the Central Universities。
文摘Deep-level traps at the buried interface of perovskite and energy mismatch problems between the perovskite layer and heterogeneous interfaces restrict the development of ideal homogenized films and efficient perovskite solar cells(PSCs)using the one-step spin-coating method.Here,we strategically employed sparingly soluble germanium iodide as a homogenized bulk in-situ reconstruction inducing material preferentially aggregated at the perovskite buried interface with gradient doping,markedly reducing deep-level traps and withstanding local lattice strain,while minimizing non-radiative recombination losses and enhancing the charge carrier lifetime over 9μs.Furthermore,this gradient doping assisted in modifying the band diagram at the buried interface into a desirable flattened alignment,substantially mitigating the energy loss of charge carriers within perovskite films and improving the carrier extraction equilibrium.As a result,the optimized device achieved a champion power conversion efficiency of 25.24% with a fill factor of up to 84.65%,and the unencapsulated device also demonstrated excellent light stability and humidity stability.This work provides a straightforward and reliable homogenization strategy of perovskite components for obtaining efficient and stable PSCs.
基金Supported by the National Natural Science Foundation of China(Nos. 60476017 and 60636010)the Basic Research Foundation of Tsinghua National Laboratory for Information Science andTechnology (TNList)
文摘High quality strain-relaxed thin SiGe virtual substrates have been achieved by combining the misfit strain technique and the point defect technique. The point defects were first injected into the coherently strained SiGe layer through the "inserted Si layer" by argon ion implantation. After thermal annealing, an in- termediate SiGe layer was grown with a strained Si cap layer. The inserted Si layer in the SiGe film serves as the source of the misfit strain and prevents the threading dislocations from propagating into the next epitaxial layer. A strained-SilSiGelinserted-SilSiGe heterostructure was achieved with a threading dislocation density of 1×10^4 cm-2 and a root mean square surface roughness of 0.87 nm. This combined method can effectively fabricate device-quality SiGe virtual substrates with a low threading dislocation density and a smooth surface.
基金supported by the Korea Electric Power Corporation(Grant number:R20XO02-1)the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(NRF-2019R1A2C1084010).
文摘Mixed tin-ead perovskites suffer from structural instability and rapid tin oxidation;thus,the investigation of their optimal composition ranges is important to address these inherent weaknesses.The critical role of triple cations in mixed Sn–Pb iodides is studied by performing a wide range of compositional screenings over mechanochemically synthesized bulk and solution-processed thin films.A ternary phase map of FA(Sn_(0.6)Pb_(0.4))I_(3),MA(Sn_(0.6)Pb_(0.4))I_(3),and Cs(Sn_(0.6)Pb_(0.4))I_(3)is formed,and a promising composition window of(FA_(0.6-x)MA_(0.4)Cs_(x))Sn_(0.6)Pb_(0.4)I_(3)(0≤x≤0.1)is demonstrated through phase,photoluminescence,and stability evaluations.Solar cell performance and chemical stability across the targeted compositional space are investigated,and FA_(0.55)MA_(0.4)Cs_(0.05)Sn_(0.6)Pb_(0.4)I_(3)with strain-relaxed lattices,reduced defect densities,and improved oxidation stability is demonstrated.The inverted perovskite solar cells with the optimal composition demonstrate a power conversion efficiency of over 22%with an open-circuit voltage of 0.867 V,which corresponds to voltage loss of 0.363 V,promising for the development of narrow-bandgap perovskite solar cells.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Nos.JUSRP111A42,JUSRP211A37,JUSRP20914,JUSRP11230)the State Key Laboratory of ASIC & System,China (No.11KF003)the Natural Science Foundation of Jiangsu Province,China (No.BK2012110)
文摘The dispersion mechanism in Al0:27Ga0:73N/GaN heterostructure was investigated using frequencydependent capacitance and conductance measurements.It was found that the significant capacitance and conductance dispersion occurred primarily for measurement frequency beyond 100 kHz before the channel cutoff at the interface,suggesting that the vertical polarization electrical field under the gate metal should be closely related with the observed dispersive behavior.According to the Schottky-Read-Hall model,a traditional trapping mechanism cannot be used to explain our result.Instead,a piezoelectric polarization strain relaxation model was adopted to interpret the dispersion.By fitting the obtained capacitance data,the corresponding characteristic time and charge density were determined 10..8 s and 5.26 1012 cm..2 respectively,in good agreement with the conductance data and theoretical prediction.