The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct ...The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored.The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.展开更多
Equal cross section lateral extrusion (ECSLE) is an effective method realizing pure shear deformation. The influence of friction factor on the deformation uniformity of ECSLE was investigated with rigid plastic finite...Equal cross section lateral extrusion (ECSLE) is an effective method realizing pure shear deformation. The influence of friction factor on the deformation uniformity of ECSLE was investigated with rigid plastic finite element method. The result shows that the non-uniform deformation in extrusion is caused mainly by the friction between workpiece and die. The higher the friction factor is, the more uneven plastic deformation resulted in extruded workpiece. The relation curve of deformation uniformity vs. friction factor was drawn based on the analysis result. The curve can be used as a basis of ECSLE process design.展开更多
The welding temperature field and deformation of parallel arrangement small-section rectangular tubes is calculated by using a non-contact model. After comparing the computed results with the experimentally measured r...The welding temperature field and deformation of parallel arrangement small-section rectangular tubes is calculated by using a non-contact model. After comparing the computed results with the experimentally measured results, it shows that there exist big errors when applying this model to the numerical simulation of small-section rectangular tube' s welding temperature field and deformation. Based on a simple analysis of the errors, a contact model is presented. The heat transfer and stress analysis between small-section rectangular tubes and clamping fixture are simulated by using direct constraints method, and then the laws of the temperature distribution, which coincide with experiment, are obtained. A further numerical analysis of the stress and deformation are made, it shows that a "T" shaped stress-field is formed in the vicinity of the weld. As the stress-field departs from the centroid of tubes', this leads to the small rectangular tubes not only have a longitudinal deflection, but also have a transverse bending and deformation.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11372308, 11372307)the Fundamental Research Funds for the Central Universities (Grant WK2480000001)
文摘The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored.The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.
文摘Equal cross section lateral extrusion (ECSLE) is an effective method realizing pure shear deformation. The influence of friction factor on the deformation uniformity of ECSLE was investigated with rigid plastic finite element method. The result shows that the non-uniform deformation in extrusion is caused mainly by the friction between workpiece and die. The higher the friction factor is, the more uneven plastic deformation resulted in extruded workpiece. The relation curve of deformation uniformity vs. friction factor was drawn based on the analysis result. The curve can be used as a basis of ECSLE process design.
文摘The welding temperature field and deformation of parallel arrangement small-section rectangular tubes is calculated by using a non-contact model. After comparing the computed results with the experimentally measured results, it shows that there exist big errors when applying this model to the numerical simulation of small-section rectangular tube' s welding temperature field and deformation. Based on a simple analysis of the errors, a contact model is presented. The heat transfer and stress analysis between small-section rectangular tubes and clamping fixture are simulated by using direct constraints method, and then the laws of the temperature distribution, which coincide with experiment, are obtained. A further numerical analysis of the stress and deformation are made, it shows that a "T" shaped stress-field is formed in the vicinity of the weld. As the stress-field departs from the centroid of tubes', this leads to the small rectangular tubes not only have a longitudinal deflection, but also have a transverse bending and deformation.