We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational...We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational method and a selfconsistent procedure. A built-in electric field produced by the strain-induced piezoelectric polarization is considered in our calculations. The result indicates that the binding energies of excitons increase nearly linearly with pressure,even though the modification of strain with hydrostatic pressure is considered, and the influence of pressure is more apparent under higher e-h densities. It is also found that as the density of an e-h gas increases,the binding energies first increase slowly to a maximum and then decrease rapidly when the e-h density is larger than about 1 ×10^11 cm^-2. The excitonic binding energies increase obviously as the barrier thickness decreases due to the decrease of the built-in electric field.展开更多
The screening effect of the random-phase-approximation on the states of shallow donor impurities in free strained wurtzite GaN/AlxGa1-xN heterojunctions under hydrostatic pressure and an external electric field is inv...The screening effect of the random-phase-approximation on the states of shallow donor impurities in free strained wurtzite GaN/AlxGa1-xN heterojunctions under hydrostatic pressure and an external electric field is investigated by using a variational method and a simplified coherent potential approximation. The variations of Stark energy shift with electric field, impurity position, A1 component and areal electron density are discussed. Our results show that the screening dramatically reduces both the blue and red shifts as well as the binding energies of impurity states. For a given impurity position, the change in binding energy is more sensitive to the increase in hydrostatic pressure in the presence of the screening effect than that in the absence of the screening effect. The weakening of the blue and red shifts, induced by the screening effect, strengthens gradually with the increase of electric field. Furthermore, the screening effect weakens the mixture crystal effect, thereby influencing the Stark effect. The screening effect strengthens the influence of energy band bending on binding energy due to the areal electron density.展开更多
A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggest...A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggested. The applicability of this method is verified by calculation of the valence band offsets at strained layer heterojuntions ,such as InP/InAs, InP/GaP, GaAs/InAs, GaP/GaAs and AlAs/InAs with various strain conditions.展开更多
Semiconducting piezoelectricα-In_(2)Se_(3) and 3R MoS_(2) have attracted tremendous attention due to their unique electronic properties.Artificial van der Waals(vdWs)hetero-structures constructed withα-In_(2)Se_(3)a...Semiconducting piezoelectricα-In_(2)Se_(3) and 3R MoS_(2) have attracted tremendous attention due to their unique electronic properties.Artificial van der Waals(vdWs)hetero-structures constructed withα-In_(2)Se_(3)and 3R MoS_(2)flakes have shown promising applications in optoelectronics and photocatal-ysis.Here,we present the first flexibleα-In_(2)Se_(3)/3R MoS_(2)vdWs p-n heterojunction devices for photodetection from the visible to near infrared region.These heterojunction devices exhibit an ultrahigh photoresponsivity of 2.9×10^(3)A W^(−1) and a substantial specific detectivity of 6.2×10^(10) Jones under a compressive strain of−0.26%.The photocurrent can be increased by 64%under a tensile strain of+0.35%,due to the heterojunction energy band modulation by piezoelectric polarization charges at the hetero-junction interface.This work demonstrates a feasible approach to enhancement of α-In_(2)Se_(3)/3R MoS_(2) photoelectric response through an appropriate mechanical stimulus.展开更多
Reducing the Schottky barrier height(SBH)and even achieving the transition from Schottky contacts to Ohmic contacts are key challenges of achieving high energy efficiency and high-performance power devices.In this pap...Reducing the Schottky barrier height(SBH)and even achieving the transition from Schottky contacts to Ohmic contacts are key challenges of achieving high energy efficiency and high-performance power devices.In this paper,the modulation effects of biaxial strain on the electronic properties and Schottky barrier of Mo Si_(2)N_(4)(MSN)/graphene and WSi_(2)N_(4)(WSN)/graphene heterojunctions are examined by using first principles calculations.After the construction of heterojunctions,the electronic structures of MSN,WSN,and graphene are well preserved.Herein,we show that by applying suitable external strain to a heterojunction stacked by MSN or WSN—an emerging two-dimensional(2D)semiconductor family with excellent mechanical properties—and graphene,the heterojunction can be transformed from Schottky ptype contacts into n-type contacts,even highly efficient Ohmic contacts,making it of critical importance to unleash the tremendous potentials of graphene-based van der Waals(vd W)heterojunctions.Not only are these findings invaluable for designing high-performance graphene-based electronic devices,but also they provide an effective route to realizing dynamic switching either between n-type and p-type Schottky contacts,or between Schottky contacts and Ohmic contacts.展开更多
The properties of interface polarons in a strained (111)-oriented zinc-blende GaN/AlxGa1-xN heterojunction at finite temperature under hydrostatic pressure are investigated by adopting a modified LLP variational met...The properties of interface polarons in a strained (111)-oriented zinc-blende GaN/AlxGa1-xN heterojunction at finite temperature under hydrostatic pressure are investigated by adopting a modified LLP variational method and a simplified coherent potential approximation. Considering the effect of hydrostatic pressure on the bulk longitudinal optical phonon mode, two branches interface-optical phonon modes and strain, respectively, we calculated the polaronic self-trapping energy and effective mass as functions of temperature, pressure and areal electron density. The numerical result shows that both of them near linearly increase with pressure but the self-trapping energies are nonlinear monotone increasing with increasing of the areal electron density. They are near constants below a range of temperature whereas decrease dramatically with increasing temperature beyond the range. The contributions from the bulk longitudinal optical phonon mode and one branch of interface optical phonon mode with higher frequency are important whereas the contribution from another branch of interface optical phonon mode with lower frequency is extremely small so that it can be neglected in the further discussion.展开更多
We report the results of the photoluminescence(PL)studies of the Ino.jsGao.r$As-GaAs strained quantum wells(QW’s)at 77K and at high pressures up to 5Okbar.The pressure coefficients of the T valley of(InGa)As-GaAs str...We report the results of the photoluminescence(PL)studies of the Ino.jsGao.r$As-GaAs strained quantum wells(QW’s)at 77K and at high pressures up to 5Okbar.The pressure coefficients of the T valley of(InGa)As-GaAs strained QW’s are presented for the first time.The crossover between the energy level in the well and the X valley in the barrier GaAs has been observed.The ratio of the conduction band offset to valence band offset in In_(0.25)Ga_(0.75)As-GaAs heterojunction was determined to be Qc=ΔEc:ΔEv=0.68:0.32.Some discussions about GaAs-Al0.3Ga0.7As QW’s are also presented.展开更多
Although numerous metal halide perovskite materials have been investigated in the field of optoelectronic,the development of perovskite heterojunctions with exotic structures is still rare.Herein,we report the epitaxi...Although numerous metal halide perovskite materials have been investigated in the field of optoelectronic,the development of perovskite heterojunctions with exotic structures is still rare.Herein,we report the epitaxial growth of quasi-two-dimensional(Q-2D)perovskites on methylammonium lead iodide(MAPbI_(3))single crystals to form perovskite heterojunctions with interfacial bonding.The MAPbI_(3)adjacent to epitaxial Q-2D perovskite shows blue shifted photoluminescence with shortened lifetime,which becomes significant with the reduced layer number of the Q-2D perovskites.Our findings suggest the presence of an interfacial strain gradient leading to enhanced photocarrier separation.Accordingly,compared to the MAPbI_(3)single crystal detector,the BA_(2)MAPb_(2)I_(7)/MAPbI_(3)(BA:n-butylamine)heterojunction-based photodetector demonstrates a bandpass detecting property and exhibits 5 times enhanced external quantum efficiency and 83 times enhanced specific detectivity(D*=3.26×10^(11)Jones).Remarkably,the unencapsulated BA_(2)MAPb_(2)I_(7)/MAPbI_(3)heterojunction is stable in ambient condition for>300 days.The Q-2D/3D heterojunction shows suppressed ion inter-diffusion due to the presence of Q-2D phase.展开更多
A variational method combined with solving the force balance equation is adopted to investigate the influence of strain and hydrostatic pressure on electronic mobility in a strained wurtzite AlN/GaN heterojunction by ...A variational method combined with solving the force balance equation is adopted to investigate the influence of strain and hydrostatic pressure on electronic mobility in a strained wurtzite AlN/GaN heterojunction by considering the scattering of optical-phonons in a temperature ranges from 250 to 600 K. The effects of conduction band bending and an interface barrier are also considered in our calculation. The results show that electronic mobility decreases with increasing hydrostatic pressure when the electronic density varies from 1.0 × 1012 to 6.5 × 1012 cm-2. The strain at the heterojunction interface also reduces the electronic mobility, whereas the pressure influence becomes weaker when strain is taken into account. The effect of strain and pressure becomes more obvious as temperature increases. The mobility first increases and then decreases significantly, whereas the strain and hydrostatic pressure reduce this trend as the electronic density increases at a given temperature (300 K). The results also indicate that scattering from half space phonon modes in the channel side plays a dominant role in mobility.展开更多
The magnetic skyrmion transport driven by pure voltage-induced strain gradient is proposed and studied via micromagnetic simulation.Through combining the skyrmion with multiferroic heterojunction,a voltage-induced uni...The magnetic skyrmion transport driven by pure voltage-induced strain gradient is proposed and studied via micromagnetic simulation.Through combining the skyrmion with multiferroic heterojunction,a voltage-induced uniaxial strain gradient is adjusted to move skyrmions.In the system,a pair of short-circuited trapezoidal top electrodes can generate the symmetric strain.Due to the symmetry of strain,the magnetic skyrmion can be driven with a linear motion in the middle of the nanostrip without deviation.We calculate the strain distribution generated by the trapezoidal top electrodes pair,and further investigate the influence of the strain intensity as well as the strain gradient on the skyrmion velocity.Our findings provide a stable and low-energy regulation method for skyrmion transport.展开更多
The binding energies of bound polarons near the interface of a strained wurtzite GaN/Al_xGa_(1-x)N het-erojunction are studied by using a modified LLP variational method and a simplified coherent potential approxima...The binding energies of bound polarons near the interface of a strained wurtzite GaN/Al_xGa_(1-x)N het-erojunction are studied by using a modified LLP variational method and a simplified coherent potential approximation under hydrostatic pressure and an external electric field.Considering the biaxial strain due to lattice mismatch or epitaxial growth,the uniaxial strain effects and the influences of the electron-phonon interaction as well as impurity-phonon interaction including the effects of interface-optical phonon modes and half-space phonon modes,the binding energies as functions of pressure,the impurity position,areal electron density and the phonon effect on the Stark energy shift are investigated.The numerical result shows that the contributions from the interface optical phonon mode with higher frequency and the LO-like half space mode to the binding energy and the Stark energy shift are important and obviously increase with increasing hydrostatic pressure,whereas the interface optical phonon mode with lower frequency and the TO-like half space mode are extremely small and are insensitive to the impurity position and hydrostatic pressure.It is also shown that the conductive band bending should not be neglected.展开更多
文摘We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational method and a selfconsistent procedure. A built-in electric field produced by the strain-induced piezoelectric polarization is considered in our calculations. The result indicates that the binding energies of excitons increase nearly linearly with pressure,even though the modification of strain with hydrostatic pressure is considered, and the influence of pressure is more apparent under higher e-h densities. It is also found that as the density of an e-h gas increases,the binding energies first increase slowly to a maximum and then decrease rapidly when the e-h density is larger than about 1 ×10^11 cm^-2. The excitonic binding energies increase obviously as the barrier thickness decreases due to the decrease of the built-in electric field.
基金Project supported by the National Natural Science Foundation of China (Grant No 60566002)the Specialized Research Fundfor the Doctoral Program of Higher Education of China (Grant No 20070126001)
文摘The screening effect of the random-phase-approximation on the states of shallow donor impurities in free strained wurtzite GaN/AlxGa1-xN heterojunctions under hydrostatic pressure and an external electric field is investigated by using a variational method and a simplified coherent potential approximation. The variations of Stark energy shift with electric field, impurity position, A1 component and areal electron density are discussed. Our results show that the screening dramatically reduces both the blue and red shifts as well as the binding energies of impurity states. For a given impurity position, the change in binding energy is more sensitive to the increase in hydrostatic pressure in the presence of the screening effect than that in the absence of the screening effect. The weakening of the blue and red shifts, induced by the screening effect, strengthens gradually with the increase of electric field. Furthermore, the screening effect weakens the mixture crystal effect, thereby influencing the Stark effect. The screening effect strengthens the influence of energy band bending on binding energy due to the areal electron density.
文摘A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggested. The applicability of this method is verified by calculation of the valence band offsets at strained layer heterojuntions ,such as InP/InAs, InP/GaP, GaAs/InAs, GaP/GaAs and AlAs/InAs with various strain conditions.
基金MOE AcRF Tier2(2018-T2-2-005),MOE AcRF Tier1(2018-T1-005-001)A^(*)STAR AME IRG Grant SERC A1983c0027,Singapore.
文摘Semiconducting piezoelectricα-In_(2)Se_(3) and 3R MoS_(2) have attracted tremendous attention due to their unique electronic properties.Artificial van der Waals(vdWs)hetero-structures constructed withα-In_(2)Se_(3)and 3R MoS_(2)flakes have shown promising applications in optoelectronics and photocatal-ysis.Here,we present the first flexibleα-In_(2)Se_(3)/3R MoS_(2)vdWs p-n heterojunction devices for photodetection from the visible to near infrared region.These heterojunction devices exhibit an ultrahigh photoresponsivity of 2.9×10^(3)A W^(−1) and a substantial specific detectivity of 6.2×10^(10) Jones under a compressive strain of−0.26%.The photocurrent can be increased by 64%under a tensile strain of+0.35%,due to the heterojunction energy band modulation by piezoelectric polarization charges at the hetero-junction interface.This work demonstrates a feasible approach to enhancement of α-In_(2)Se_(3)/3R MoS_(2) photoelectric response through an appropriate mechanical stimulus.
基金Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University,China(Grant No.2020-52000083-01-324061)the National Natural Science Foundation of China(Grant No.61264004)the High-level Creative Talent Training Program in Guizhou Province,China(Grant No.[2015]4015)。
文摘Reducing the Schottky barrier height(SBH)and even achieving the transition from Schottky contacts to Ohmic contacts are key challenges of achieving high energy efficiency and high-performance power devices.In this paper,the modulation effects of biaxial strain on the electronic properties and Schottky barrier of Mo Si_(2)N_(4)(MSN)/graphene and WSi_(2)N_(4)(WSN)/graphene heterojunctions are examined by using first principles calculations.After the construction of heterojunctions,the electronic structures of MSN,WSN,and graphene are well preserved.Herein,we show that by applying suitable external strain to a heterojunction stacked by MSN or WSN—an emerging two-dimensional(2D)semiconductor family with excellent mechanical properties—and graphene,the heterojunction can be transformed from Schottky ptype contacts into n-type contacts,even highly efficient Ohmic contacts,making it of critical importance to unleash the tremendous potentials of graphene-based van der Waals(vd W)heterojunctions.Not only are these findings invaluable for designing high-performance graphene-based electronic devices,but also they provide an effective route to realizing dynamic switching either between n-type and p-type Schottky contacts,or between Schottky contacts and Ohmic contacts.
基金supported by the National Natural Science Foundation of China (No. 60566002)the Specialized Research Fund for the Docto-ral Program of Higher Education of China (No. 20070126001).
文摘The properties of interface polarons in a strained (111)-oriented zinc-blende GaN/AlxGa1-xN heterojunction at finite temperature under hydrostatic pressure are investigated by adopting a modified LLP variational method and a simplified coherent potential approximation. Considering the effect of hydrostatic pressure on the bulk longitudinal optical phonon mode, two branches interface-optical phonon modes and strain, respectively, we calculated the polaronic self-trapping energy and effective mass as functions of temperature, pressure and areal electron density. The numerical result shows that both of them near linearly increase with pressure but the self-trapping energies are nonlinear monotone increasing with increasing of the areal electron density. They are near constants below a range of temperature whereas decrease dramatically with increasing temperature beyond the range. The contributions from the bulk longitudinal optical phonon mode and one branch of interface optical phonon mode with higher frequency are important whereas the contribution from another branch of interface optical phonon mode with lower frequency is extremely small so that it can be neglected in the further discussion.
文摘We report the results of the photoluminescence(PL)studies of the Ino.jsGao.r$As-GaAs strained quantum wells(QW’s)at 77K and at high pressures up to 5Okbar.The pressure coefficients of the T valley of(InGa)As-GaAs strained QW’s are presented for the first time.The crossover between the energy level in the well and the X valley in the barrier GaAs has been observed.The ratio of the conduction band offset to valence band offset in In_(0.25)Ga_(0.75)As-GaAs heterojunction was determined to be Qc=ΔEc:ΔEv=0.68:0.32.Some discussions about GaAs-Al0.3Ga0.7As QW’s are also presented.
基金the National Natural Science Foundation of China(Nos.52273202,62104261,51673218,and 62004066)the National Key Research and Development Program of China(No.2022YFB3803300)+4 种基金the Natural Science Program of Xinjiang Uygur Autonomous Region(No.2023D01D03)the Major Scientific and Technological Project of Changsha(No.kq2301002)the Program of Hundreds of Talents of Hunan Province and Changsha Municipal Natural Science Foundation(No.KQ2007027)the National Key Research and Development Program of China(No.2023YFE0116800)the Beijing Natural Science Foundation(No.IS23037).
文摘Although numerous metal halide perovskite materials have been investigated in the field of optoelectronic,the development of perovskite heterojunctions with exotic structures is still rare.Herein,we report the epitaxial growth of quasi-two-dimensional(Q-2D)perovskites on methylammonium lead iodide(MAPbI_(3))single crystals to form perovskite heterojunctions with interfacial bonding.The MAPbI_(3)adjacent to epitaxial Q-2D perovskite shows blue shifted photoluminescence with shortened lifetime,which becomes significant with the reduced layer number of the Q-2D perovskites.Our findings suggest the presence of an interfacial strain gradient leading to enhanced photocarrier separation.Accordingly,compared to the MAPbI_(3)single crystal detector,the BA_(2)MAPb_(2)I_(7)/MAPbI_(3)(BA:n-butylamine)heterojunction-based photodetector demonstrates a bandpass detecting property and exhibits 5 times enhanced external quantum efficiency and 83 times enhanced specific detectivity(D*=3.26×10^(11)Jones).Remarkably,the unencapsulated BA_(2)MAPb_(2)I_(7)/MAPbI_(3)heterojunction is stable in ambient condition for>300 days.The Q-2D/3D heterojunction shows suppressed ion inter-diffusion due to the presence of Q-2D phase.
基金supported by the National Natural Science Foundation of China (No.60566002)the Specialized Research Fund for the Doctoral Program of Higher Education (No.20070126001)
文摘A variational method combined with solving the force balance equation is adopted to investigate the influence of strain and hydrostatic pressure on electronic mobility in a strained wurtzite AlN/GaN heterojunction by considering the scattering of optical-phonons in a temperature ranges from 250 to 600 K. The effects of conduction band bending and an interface barrier are also considered in our calculation. The results show that electronic mobility decreases with increasing hydrostatic pressure when the electronic density varies from 1.0 × 1012 to 6.5 × 1012 cm-2. The strain at the heterojunction interface also reduces the electronic mobility, whereas the pressure influence becomes weaker when strain is taken into account. The effect of strain and pressure becomes more obvious as temperature increases. The mobility first increases and then decreases significantly, whereas the strain and hydrostatic pressure reduce this trend as the electronic density increases at a given temperature (300 K). The results also indicate that scattering from half space phonon modes in the channel side plays a dominant role in mobility.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.61832007)the Natural Science Foundation of Shanxi Province,China(Grant Nos.2021JM-221 and 2018JM6075)the Natural Science Basic Research Plan in Shanxi Province of China(Grant No.2020JQ-470)。
文摘The magnetic skyrmion transport driven by pure voltage-induced strain gradient is proposed and studied via micromagnetic simulation.Through combining the skyrmion with multiferroic heterojunction,a voltage-induced uniaxial strain gradient is adjusted to move skyrmions.In the system,a pair of short-circuited trapezoidal top electrodes can generate the symmetric strain.Due to the symmetry of strain,the magnetic skyrmion can be driven with a linear motion in the middle of the nanostrip without deviation.We calculate the strain distribution generated by the trapezoidal top electrodes pair,and further investigate the influence of the strain intensity as well as the strain gradient on the skyrmion velocity.Our findings provide a stable and low-energy regulation method for skyrmion transport.
基金supported by the National Natural Science Foundation of China(No.60966001)the Key Project of Natural Science Foundation of Inner Mongolia Autonomous Region,China(No.20080404Zd02)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20070126001).
文摘The binding energies of bound polarons near the interface of a strained wurtzite GaN/Al_xGa_(1-x)N het-erojunction are studied by using a modified LLP variational method and a simplified coherent potential approximation under hydrostatic pressure and an external electric field.Considering the biaxial strain due to lattice mismatch or epitaxial growth,the uniaxial strain effects and the influences of the electron-phonon interaction as well as impurity-phonon interaction including the effects of interface-optical phonon modes and half-space phonon modes,the binding energies as functions of pressure,the impurity position,areal electron density and the phonon effect on the Stark energy shift are investigated.The numerical result shows that the contributions from the interface optical phonon mode with higher frequency and the LO-like half space mode to the binding energy and the Stark energy shift are important and obviously increase with increasing hydrostatic pressure,whereas the interface optical phonon mode with lower frequency and the TO-like half space mode are extremely small and are insensitive to the impurity position and hydrostatic pressure.It is also shown that the conductive band bending should not be neglected.