The properties of strangelets at zero temperature with a new quark model that includes both the confinement and one-gluonexchange interactions is studied in a fully self-consistent method.The charge and parameter depe...The properties of strangelets at zero temperature with a new quark model that includes both the confinement and one-gluonexchange interactions is studied in a fully self-consistent method.The charge and parameter dependence of the stability of strangelets are discussed.It is found that the one-gluon-exchange interaction lowers the energy of a strangelet,and consequently allows the strangelet to be absolutely stable.The stable strangelet radius in the present model is smaller in comparison with the absence of one-gluon-exchange interaction,and can thus be much less than that of a normal nucleus with the same baryon number,according to the strength of the confinement and one-gluon-exchange interactions.展开更多
The conventionally separated treatments for strangelets and strange stars are now unified with a more comprehensive theoretical description for objects ranging from strangelets to strange stars. After constraining the...The conventionally separated treatments for strangelets and strange stars are now unified with a more comprehensive theoretical description for objects ranging from strangelets to strange stars. After constraining the model parameter according to the Witten–Bodmer hypothesis and observational mass–radius probability distribution of pulsars, we investigate the properties of this kind of objects. It is found that the energy per baryon decreases monotonically with increasing baryon number and reaches its minimum at the maximum baryon number, corresponding to the most massive strange star. Due to the quark depletion,an electric potential well is formed on the surface of the quarkpart. For a rotational bare strange star, a magnetic field with the typical strength in pulsars is generated.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11135011 and 11045006)by the Chinese Academy Sciences Key Project(Grant No.Y12A0A0012)
文摘The properties of strangelets at zero temperature with a new quark model that includes both the confinement and one-gluonexchange interactions is studied in a fully self-consistent method.The charge and parameter dependence of the stability of strangelets are discussed.It is found that the one-gluon-exchange interaction lowers the energy of a strangelet,and consequently allows the strangelet to be absolutely stable.The stable strangelet radius in the present model is smaller in comparison with the absence of one-gluon-exchange interaction,and can thus be much less than that of a normal nucleus with the same baryon number,according to the strength of the confinement and one-gluon-exchange interactions.
基金supported by the National Natural Science Foundation of China (11135011, 11120101005, 11275248, 11475110,11475115, 11575190 and 11525524)the National Key Basic Research Program of China (2013CB834400)+1 种基金the Knowledge Innovation Project of the Chinese Academy of Sciences (KJCX2-EW-N01)supported by the HPC Cluster of SKLTP/ITP-CAS and the Supercomputing Center, CNIC of CAS
文摘The conventionally separated treatments for strangelets and strange stars are now unified with a more comprehensive theoretical description for objects ranging from strangelets to strange stars. After constraining the model parameter according to the Witten–Bodmer hypothesis and observational mass–radius probability distribution of pulsars, we investigate the properties of this kind of objects. It is found that the energy per baryon decreases monotonically with increasing baryon number and reaches its minimum at the maximum baryon number, corresponding to the most massive strange star. Due to the quark depletion,an electric potential well is formed on the surface of the quarkpart. For a rotational bare strange star, a magnetic field with the typical strength in pulsars is generated.