The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe...The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.展开更多
Spatial structure of overlying strata existed and evolved dynamically with the exploitation scope (boundary conditions) changes in coal mines and to induce rockburst. Based on the“key strata”theory, the integrated...Spatial structure of overlying strata existed and evolved dynamically with the exploitation scope (boundary conditions) changes in coal mines and to induce rockburst. Based on the“key strata”theory, the integrated spatial structure of overlying strata was put forward, which was composed of “O-X” structure in the plane section and “F” structure in the vertical section. The formation and ongoing instability of the“O-X”and“F”structures were called as dynamic evolution cycle of the overlying strata. Three basic categories of “O-X”, “F” and “T” structures were defined, and the strata behaviors of each spatial structure were analyzed. According to energy theory, mechanism of rockburst induced by spatial structure instability was discussed. The research expanded the scope of traditional ground pressure theory and provided a guide for the prevention of rockburst and mining tremors induced by structure instability of overlying展开更多
This research explores the potential for the evaluation and prediction of earth pressure balance shield performance based on a gray system model.The research focuses on a shield tunnel excavated for Metro Line 2 in Da...This research explores the potential for the evaluation and prediction of earth pressure balance shield performance based on a gray system model.The research focuses on a shield tunnel excavated for Metro Line 2 in Dalian,China.Due to the large error between the initial geological exploration data and real strata,the project construction is extremely difficult.In view of the current situation regarding the project,a quantitative method for evaluating the tunneling efficiency was proposed using cutterhead rotation(R),advance speed(S),total thrust(F)and torque(T).A total of 80 datasets with three input parameters and one output variable(F or T)were collected from this project,and a prediction framework based gray system model was established.Based on the prediction model,five prediction schemes were set up.Through error analysis,the optimal prediction scheme was obtained from the five schemes.The parametric investigation performed indicates that the relationships between F and the three input variables in the gray system model harmonize with the theoretical explanation.The case shows that the shield tunneling performance and efficiency are improved by the tunneling parameter prediction model based on the gray system model.展开更多
Dynamic disasters,such as rock burst due to the breaking of large area stiff roof strata,are known to occur in the hard rock strata of coal mines.In this paper,mechanical models of the fracturing processes of thick ha...Dynamic disasters,such as rock burst due to the breaking of large area stiff roof strata,are known to occur in the hard rock strata of coal mines.In this paper,mechanical models of the fracturing processes of thick hard rock strata were established based on the thick plate theory and numerical simulations.The results demonstrated that,based on the fracture characteristics of the thick hard rock strata,four fracture models could be analyzed in detail,and the corresponding theoretical failure criteria were determined in detail.In addition,the influence of weak interlayer position on the fracture models and ground pressure of rock strata is deeply analyzed,and six numerical simulation schemes have been implemented.The results showed that the working face pressure caused by the independent movement of the lower layer is relatively low.The different fracture type of the thick hard rock strata had different demands on the working resistance of the hydraulic powered supports.The working resistance of the hydraulic powered supports required by the stratified movements was lower than that of the non-stratified movements.展开更多
Large-scale bed separation in bending strip upside cranny strip was brought by un-consistency of overlying strata subsidence movement due to under surface mining. Different characteristic of movement and deformation o...Large-scale bed separation in bending strip upside cranny strip was brought by un-consistency of overlying strata subsidence movement due to under surface mining. Different characteristic of movement and deformation of overlying strata and surface include periodic caving of bed separation interspaced along with work face mining. Conglomerate rock layer movement is the main power fountain of rock burst on the basis of locale observation. And rock burst moves periodically adapted to movement of deep conglomerate rock layer which had similar characteristic with main roof. Practice indicates this method that forecasting and prediction using correlation information of movement of strata and surface is feasible and has reference meaning for similar stope.展开更多
To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of over...To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of overlying strata was analyzed by Winkler elastic foundation beam theory.Furthermore,the influence law of panel width to suspended width and limit breaking span of key strata were also analyzed by thin plate theory.Through micro-seismic monitoring,theoretical analysis,numerical simulation and working resistance of support of field measurement,this study investigated the fracture characteristic of overlying strata and mechanism of rock burst in irregular working face.The results show that the fracture characteristic of overlying strata shows a spatial trapezoid structure,with the main roof being as an undersurface.The fracture form changes from vertical‘‘O-X"type to transverse‘‘O-X"type with the increase of trapezoidal height.From the narrow mining face to the wide mining face,the suspended width of key strata is greater than its limit breaking width,and a strong dynamic load is produced by the fracture of key strata.The numerical simulation and micro-seismic monitoring results show that the initial fracture position of key strata is close to tailgate 7447.Also there is a high static load caused by fault tectonic.The dynamic and static combined load induce rock burst.Accordingly,a cooperative control technology was proposed,which can weaken dynamic load by hard roof directional hydraulic fracture and enhance surrounding rock by supporting system.展开更多
Following tunnel excavation and lining completion,fractured surrounding rock deforms gradually over time;this results in a time-dependent evolution of the pressure applied to the lining structure by the surrounding ro...Following tunnel excavation and lining completion,fractured surrounding rock deforms gradually over time;this results in a time-dependent evolution of the pressure applied to the lining structure by the surrounding rock.Thus,the safety of the tunnel lining in weak strata is strongly correlated with time.In this study,we developed an analytical method for determining the time-dependent pressure in the surrounding rock and lining structure of a circular tunnel under a hydrostatic stress field.Under the proposed method,the stress–strain relationship of the fractured surrounding rock is assumed to conform to that of the Burgers viscoelastic component,and the lining structure is assumed to be an elastomer.Based on these assumptions,the viscoelastic deformation of the surrounding rock,the elastic deformation of the lining structure,and the coordinated deformation between the surrounding rock and lining structure were derived.The proposed analytical method,which employs a time-dependent safety coefficient,was subsequently used to estimate the durability of the lining structure of the Foling Tunnel in China.The derived attenuation curve of the safety coefficient with respect to time can assist engineers in predicting the remaining viable life of the lining structure.Unlike existing analytical methods,the method derived in this study considers the time dependency of the interaction between the surrounding rock and tunnel lining;hence,it is more suitable for the evaluation of lining lifetime.展开更多
1 Introduction Geological studies established on several sections in Lanping-Simao basin have shown that the salt-bearing strata of Mengyejing formation(Yunlong Fm.in Lanping basin)are constituted by an alternation of...1 Introduction Geological studies established on several sections in Lanping-Simao basin have shown that the salt-bearing strata of Mengyejing formation(Yunlong Fm.in Lanping basin)are constituted by an alternation of salt layers and interbedded facies.The latter consists mainly of mudstones,and mudstone-rich conglomerate.The mineralogy and geochemistry of salt-bearing beds and展开更多
This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of ...This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnelsegments. It investigates the impact of shield construction on surface settlement, mechanical characteristics ofnearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizingthe Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using theABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force,and cutterhead torque. Its accuracy is validated against field monitoring data from engineering projects. Simulationswere conducted to analyze ground settlement and mechanical changes in adjacent rock and segments acrossfive soil layers. The results indicate that disturbances are most significant near the excavation zone of the shieldmachine, with a prominent settlement trough forming and stabilizing around 2.0–3.0 D from the excavation. Theexcavation face compresses the soil, inducing lateral expansion. As grouting pressure decreases, the segmentexperiences upward buoyancy. In mixed strata, softer layers witness increased cutting, intensifying disturbancesbut reducing segment floatation. These findings offer valuable insights for predicting settlements, ensuring segmentand rock safety, and optimizing tunneling parameters.展开更多
Slopes consisting of interbedded strata of soft and hard rock mass, such as purplish red mudstone and grey brown arkosic sandstone of Jurassic age, are very common in Sichuan basin of China. The mudstone is soft whil...Slopes consisting of interbedded strata of soft and hard rock mass, such as purplish red mudstone and grey brown arkosic sandstone of Jurassic age, are very common in Sichuan basin of China. The mudstone is soft while the sandstone is hard and contains many opening or closing joints with a high dip angle. Some are nearly parallel and the others are nearly decussated with the trend of the slopes. Many natural slopes are in deformation or sliding because of those reasons. The stability of cutting slopes and supporting method to be taken for their stability in civil engineering are important. In this paper, the stability and deformation of the slopes are studied. The methods of analysis and support design principle are analyzed also. Finally, the method put forward is applied to study Fengdian high cutting slope in Sichuan section of the express way from Chengdu to Shanghai. The results indicate that the method is effective.展开更多
This study presents a novel approach using theoretical analysis to assess the risk of rock burst of an island longwall panel that accounts for the coupled behavior of stress distribution and overlying strata movement....This study presents a novel approach using theoretical analysis to assess the risk of rock burst of an island longwall panel that accounts for the coupled behavior of stress distribution and overlying strata movement. The height of destressed zone(HDZ) above the mined panel was first determined based on the strain energy balance in an underground coal mining area. HDZ plays a vital role in accurately determining the amount of different loads being transferred towards the front abutment and panel sides. Subsequently, based on the load transfer mechanisms, a series of formulae were derived for the average static and dynamic stresses in the island pillar through theoretical analysis. Finally, the model was applied to determining the side abutment stress distribution of LW 3112 in the Chaoyang Coal Mine and the results of ground subsidence monitoring were used to verify the predicted model. It can be concluded that the proposed computational model can be successfully applied to determining the safety of mining in island longwall panels.展开更多
The inverse problem of wave equation is the importance of study not only in seismic prospecting but also in applied mathematics. With the development of the research, the inverse methods of 1 - D wave equations have b...The inverse problem of wave equation is the importance of study not only in seismic prospecting but also in applied mathematics. With the development of the research, the inverse methods of 1 - D wave equations have been trending towards the multiple parameters inversion . We have obtained an inverse method with double -parameter, in which medium density and wave velocity can be derived simultaneously. In this paper, to increase the inverse accuracy, the method is improved as follows. Firstly, the formula in which the Green Function is omitted are derived and used. Secondly, the regularizing method is reasonable used by choosing the stable function. With the new method, we may derive elastic parameter and medium density or medium density and wave velocity. Thus, lithology parameters for seismic prospecting may be obtained.After comparing the derived values from the new method with that from previous method, we obtain the new method through which substantially improve the derived accuracy . The new method has been applied to real depths inversion for sedimentary strata and volcanic rock strata in Chaoyanggou Terrace of Songliao Basin in eastern China. According to the inverse results,the gas - bearing beds are determlned.展开更多
The rupture and movement scope of overlying strata upon the longwall mining face increased sharply as the exploitation scale and degree growing recently,and the spatial structure formed by fractured strata became much...The rupture and movement scope of overlying strata upon the longwall mining face increased sharply as the exploitation scale and degree growing recently,and the spatial structure formed by fractured strata became much more complex.The overlying strata above the working face and adjacent gobs would affect each other and move cooperatively because small pillar can hardly separate the connection of overlying strata between two workfaces,which leads to mining seismicity in the gob and induces rockburst disaster that named spatial structure instability rockburst in this paper.Based on the key stratum theory,the F-structure model was established to describe the overlying strata characteristic and rockburst mechanism of workface with one side of gob and the other side un-mined solid coal seam.The results show that F-structure in the gob will re-active and loss stability under the influence of neighboring mining,and fracture and shear slipping in the process of instability is the mechanism of the seismicity in the gob.The F-structure was divided into two categories that short-arm F and long-arm F structure based on the state of strata above the gob.We studied the underground pressure rules of different F-structure and instability mechanism,thus provide the guide for prevention and control of the F-structure spatial instability rockburst.The micro-seismic system is used for on-site monitoring and researching the distribution rules of seismic events,the results confrmed the existence and correct of F-spatial structure.At last specialized methods for prevention seismicity and rockburst induced by F-structure instability are proposed and applied in Huating Coal Mine.展开更多
The properties of broken rock before and after grouting reinforcement are studied. Testing results show that grouting can raise the residual strength of broken rock, and the broken rockness by grouting can keep the st...The properties of broken rock before and after grouting reinforcement are studied. Testing results show that grouting can raise the residual strength of broken rock, and the broken rockness by grouting can keep the steady supporting capacity within a relatively large deformation range. Revealing of the characteristics of stage deformation and damage process comes to the conclusion that the supporting of soft rock roadway should be analyzed in a dynamic view, and the grouting should be delayed at a proper occasion. Based on the above, the stepwise reinforcement technology characterized by immediate shotcreting, timely bolting and delay grouting is put forward and illustrated with a successful engineering practice.展开更多
The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground ...The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground pressure and strata control,this research proposed a new solution to mining stress problems by establishing adual-load-zone stratum structural model.Elastic foundation beam theory was used tosolve the stress of overlying strata of the dual-load-zones with superposition method,which revised the traditional calculation method of mining stress.The abnormal increaseof lead abutment pressure in the mining area was explained effectively,through which theevolution law of mining stress in the case of hard rock was obtained.The results indicatethat mining stress experiences a drastic change within the range of 50 m ahead of the coalwall due to the collapse of main roof;under the influence of main key stratum andinferior key strata,the influence range of lead abutment pressure is extended up toapproximately 120 m in the working face;this remarkable increase can be attributed tothe excessive length of sagging zone.Results from both the dual-load-zone modelexperiment and field measurement demonstrate high consistency.The model can predictthe influence range of abutment pressure effectively and thus guide the safety productionof mining.展开更多
In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental f...In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental frame for similar material simulation test was used to build the model with the dip of 30°, based on analyses of geological and technological conditions in Huainan mine area, Anhui, China. The strata behaviors, such as extracting- and mining-induced stresses development, deformation and failure modes, were synthetically integrated during working face advancing. Results show that the development characteristics of mining-induced stress and deformation are asymmetrical in the roadway. The strata behaviors are totally different in different sections of the roadway. Because of asymmetrically geometrical structure influenced by increasing dip, strata dislocating, rock falling and breaking occur in roof. Then, squeezing, collapsing and caving of coal happen in upper- and lower-rib due to shearing action caused by asymmetrical roof bending and dislocating. Owing to the absence of supporting, floor heaving is very violent and usually the zone of floor heaving develops from the lower-rib to upper-rib. Engineering practices show that, due to the asymmetrical characteristics of rock pressure and roadway configuration, it is more difficult to implement bolt supporting system to control rock stability of roadways in LDCSs. The upper-rib and roof of entries are the key sections. Consequently, it is reliable to use asymmetrical bolt-mesh-cable supporting system to control rock stability of roadways based on the asymmetrical characteristics of roadway configuration and strata behaviors.展开更多
The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding ...The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding strata as well as the internal friction angle of bedding plane and its cohesion all exert an influence upon the magnitude of the asymmetric rock pressure applied to tunnel. The feature that rock pressure applied to tunnel structure varies with the incUnation angle of bedding strata is discussed, At last, the safety factor, which is utilized to evaluate the working state of tunnel lining structure, is calculated for both symmetric and asymmetric lining structures. The calculation results elucidate that the asymmetric tunnel structure can be more superior to bear rock pressure in comparison with the symmetric one and should be adopted in engineering as far as possible.展开更多
1 Introduction Stratigraphic correlation is the most important basic work in oil and gas exploration and development,Scientific and reasonable stratigraphic correlation is the premise of developing fine reservoir desc...1 Introduction Stratigraphic correlation is the most important basic work in oil and gas exploration and development,Scientific and reasonable stratigraphic correlation is the premise of developing fine reservoir description,and it is展开更多
The distributions of strata rock temperature around a driving head with auxil- iary ventilation were analyzed theoretically based on a program which was developed by the authors to predict the thermal environmental co...The distributions of strata rock temperature around a driving head with auxil- iary ventilation were analyzed theoretically based on a program which was developed by the authors to predict the thermal environmental conditions in a development heading with forcing auxiliary ventilation. The influences of wetness of the airway surface were dis- cussed on the cooled zone of the strata rock and on the temperature distribution in the surrounding rock. It is shown that the advancing speed and driving time have little influ- ence on the temperature profile in front of the working face of a driving airway, and the rock temperature 1.5 m ahead of the working face can be taken as the virgin rock tem- perature.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51874311,52174096)。
文摘The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.
基金Project (2013QNB30) supported by the Fundamental Research Funds for Central Universities,ChinaProject (2010CB226805) supported by the National Basic Research Program of China+3 种基金Project (51174285) supported by the National Natural Science Foundation of ChinaProject (2012BAK09B01) supported by the Twelfth Five-Year National Key Technology R&D Program,ChinaProject (SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject (SKLCRSM10X05) supported by the Independent Foundation of State Key Laboratory of Coal Resources and Safe Mining,China
文摘Spatial structure of overlying strata existed and evolved dynamically with the exploitation scope (boundary conditions) changes in coal mines and to induce rockburst. Based on the“key strata”theory, the integrated spatial structure of overlying strata was put forward, which was composed of “O-X” structure in the plane section and “F” structure in the vertical section. The formation and ongoing instability of the“O-X”and“F”structures were called as dynamic evolution cycle of the overlying strata. Three basic categories of “O-X”, “F” and “T” structures were defined, and the strata behaviors of each spatial structure were analyzed. According to energy theory, mechanism of rockburst induced by spatial structure instability was discussed. The research expanded the scope of traditional ground pressure theory and provided a guide for the prevention of rockburst and mining tremors induced by structure instability of overlying
基金support by the National Natural Science Foundation of China(Grant Nos.52108377,52090084,and 51938008).
文摘This research explores the potential for the evaluation and prediction of earth pressure balance shield performance based on a gray system model.The research focuses on a shield tunnel excavated for Metro Line 2 in Dalian,China.Due to the large error between the initial geological exploration data and real strata,the project construction is extremely difficult.In view of the current situation regarding the project,a quantitative method for evaluating the tunneling efficiency was proposed using cutterhead rotation(R),advance speed(S),total thrust(F)and torque(T).A total of 80 datasets with three input parameters and one output variable(F or T)were collected from this project,and a prediction framework based gray system model was established.Based on the prediction model,five prediction schemes were set up.Through error analysis,the optimal prediction scheme was obtained from the five schemes.The parametric investigation performed indicates that the relationships between F and the three input variables in the gray system model harmonize with the theoretical explanation.The case shows that the shield tunneling performance and efficiency are improved by the tunneling parameter prediction model based on the gray system model.
基金the Beijing Outstanding Young Scientist Program of China(No.BJJWZYJH01201911413037)projects(Nos.41877257 and 51622404)supported by National Natural Science Foundation of China+1 种基金Shaanxi Coal Group Key Project of China(No.2018SMHKJ-A-J-03)the Fundamental Research Funds for the Central Universities of China(No.2021YJSLJ23)。
文摘Dynamic disasters,such as rock burst due to the breaking of large area stiff roof strata,are known to occur in the hard rock strata of coal mines.In this paper,mechanical models of the fracturing processes of thick hard rock strata were established based on the thick plate theory and numerical simulations.The results demonstrated that,based on the fracture characteristics of the thick hard rock strata,four fracture models could be analyzed in detail,and the corresponding theoretical failure criteria were determined in detail.In addition,the influence of weak interlayer position on the fracture models and ground pressure of rock strata is deeply analyzed,and six numerical simulation schemes have been implemented.The results showed that the working face pressure caused by the independent movement of the lower layer is relatively low.The different fracture type of the thick hard rock strata had different demands on the working resistance of the hydraulic powered supports.The working resistance of the hydraulic powered supports required by the stratified movements was lower than that of the non-stratified movements.
文摘Large-scale bed separation in bending strip upside cranny strip was brought by un-consistency of overlying strata subsidence movement due to under surface mining. Different characteristic of movement and deformation of overlying strata and surface include periodic caving of bed separation interspaced along with work face mining. Conglomerate rock layer movement is the main power fountain of rock burst on the basis of locale observation. And rock burst moves periodically adapted to movement of deep conglomerate rock layer which had similar characteristic with main roof. Practice indicates this method that forecasting and prediction using correlation information of movement of strata and surface is feasible and has reference meaning for similar stope.
基金supported by the Key Project of National Natural Science Foundation of China (No. 51634001)the National Natural Science Foundation of China (Nos. 51404269 and 51674253)+1 种基金the State Key Research Development Program of China (No. 2016YFC0801403)the Key Research Development Program of Jiangsu Province, China (No. BE2015040)
文摘To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of overlying strata was analyzed by Winkler elastic foundation beam theory.Furthermore,the influence law of panel width to suspended width and limit breaking span of key strata were also analyzed by thin plate theory.Through micro-seismic monitoring,theoretical analysis,numerical simulation and working resistance of support of field measurement,this study investigated the fracture characteristic of overlying strata and mechanism of rock burst in irregular working face.The results show that the fracture characteristic of overlying strata shows a spatial trapezoid structure,with the main roof being as an undersurface.The fracture form changes from vertical‘‘O-X"type to transverse‘‘O-X"type with the increase of trapezoidal height.From the narrow mining face to the wide mining face,the suspended width of key strata is greater than its limit breaking width,and a strong dynamic load is produced by the fracture of key strata.The numerical simulation and micro-seismic monitoring results show that the initial fracture position of key strata is close to tailgate 7447.Also there is a high static load caused by fault tectonic.The dynamic and static combined load induce rock burst.Accordingly,a cooperative control technology was proposed,which can weaken dynamic load by hard roof directional hydraulic fracture and enhance surrounding rock by supporting system.
基金supported by the National Natural Science Foundation of China(Nos.71631007 and 71771020)。
文摘Following tunnel excavation and lining completion,fractured surrounding rock deforms gradually over time;this results in a time-dependent evolution of the pressure applied to the lining structure by the surrounding rock.Thus,the safety of the tunnel lining in weak strata is strongly correlated with time.In this study,we developed an analytical method for determining the time-dependent pressure in the surrounding rock and lining structure of a circular tunnel under a hydrostatic stress field.Under the proposed method,the stress–strain relationship of the fractured surrounding rock is assumed to conform to that of the Burgers viscoelastic component,and the lining structure is assumed to be an elastomer.Based on these assumptions,the viscoelastic deformation of the surrounding rock,the elastic deformation of the lining structure,and the coordinated deformation between the surrounding rock and lining structure were derived.The proposed analytical method,which employs a time-dependent safety coefficient,was subsequently used to estimate the durability of the lining structure of the Foling Tunnel in China.The derived attenuation curve of the safety coefficient with respect to time can assist engineers in predicting the remaining viable life of the lining structure.Unlike existing analytical methods,the method derived in this study considers the time dependency of the interaction between the surrounding rock and tunnel lining;hence,it is more suitable for the evaluation of lining lifetime.
基金supported by the National Basic Research Program of China (2011CB403004)the National Natural Science Foundation of China (41303029)
文摘1 Introduction Geological studies established on several sections in Lanping-Simao basin have shown that the salt-bearing strata of Mengyejing formation(Yunlong Fm.in Lanping basin)are constituted by an alternation of salt layers and interbedded facies.The latter consists mainly of mudstones,and mudstone-rich conglomerate.The mineralogy and geochemistry of salt-bearing beds and
文摘This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnelsegments. It investigates the impact of shield construction on surface settlement, mechanical characteristics ofnearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizingthe Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using theABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force,and cutterhead torque. Its accuracy is validated against field monitoring data from engineering projects. Simulationswere conducted to analyze ground settlement and mechanical changes in adjacent rock and segments acrossfive soil layers. The results indicate that disturbances are most significant near the excavation zone of the shieldmachine, with a prominent settlement trough forming and stabilizing around 2.0–3.0 D from the excavation. Theexcavation face compresses the soil, inducing lateral expansion. As grouting pressure decreases, the segmentexperiences upward buoyancy. In mixed strata, softer layers witness increased cutting, intensifying disturbancesbut reducing segment floatation. These findings offer valuable insights for predicting settlements, ensuring segmentand rock safety, and optimizing tunneling parameters.
文摘Slopes consisting of interbedded strata of soft and hard rock mass, such as purplish red mudstone and grey brown arkosic sandstone of Jurassic age, are very common in Sichuan basin of China. The mudstone is soft while the sandstone is hard and contains many opening or closing joints with a high dip angle. Some are nearly parallel and the others are nearly decussated with the trend of the slopes. Many natural slopes are in deformation or sliding because of those reasons. The stability of cutting slopes and supporting method to be taken for their stability in civil engineering are important. In this paper, the stability and deformation of the slopes are studied. The methods of analysis and support design principle are analyzed also. Finally, the method put forward is applied to study Fengdian high cutting slope in Sichuan section of the express way from Chengdu to Shanghai. The results indicate that the method is effective.
基金Project(2017CXNL01) supported by the Fundamental Research Funds for the Central Universities,China
文摘This study presents a novel approach using theoretical analysis to assess the risk of rock burst of an island longwall panel that accounts for the coupled behavior of stress distribution and overlying strata movement. The height of destressed zone(HDZ) above the mined panel was first determined based on the strain energy balance in an underground coal mining area. HDZ plays a vital role in accurately determining the amount of different loads being transferred towards the front abutment and panel sides. Subsequently, based on the load transfer mechanisms, a series of formulae were derived for the average static and dynamic stresses in the island pillar through theoretical analysis. Finally, the model was applied to determining the side abutment stress distribution of LW 3112 in the Chaoyang Coal Mine and the results of ground subsidence monitoring were used to verify the predicted model. It can be concluded that the proposed computational model can be successfully applied to determining the safety of mining in island longwall panels.
文摘The inverse problem of wave equation is the importance of study not only in seismic prospecting but also in applied mathematics. With the development of the research, the inverse methods of 1 - D wave equations have been trending towards the multiple parameters inversion . We have obtained an inverse method with double -parameter, in which medium density and wave velocity can be derived simultaneously. In this paper, to increase the inverse accuracy, the method is improved as follows. Firstly, the formula in which the Green Function is omitted are derived and used. Secondly, the regularizing method is reasonable used by choosing the stable function. With the new method, we may derive elastic parameter and medium density or medium density and wave velocity. Thus, lithology parameters for seismic prospecting may be obtained.After comparing the derived values from the new method with that from previous method, we obtain the new method through which substantially improve the derived accuracy . The new method has been applied to real depths inversion for sedimentary strata and volcanic rock strata in Chaoyanggou Terrace of Songliao Basin in eastern China. According to the inverse results,the gas - bearing beds are determlned.
基金Financial support for this work, provided by the National Basic Research Program of China (No. 2010CB226805)the National Natural Science Foundation of China (No. 51174285)+1 种基金the Twelfth Five-Year National Key Technology R&D Program (No. 2012BAK09B01)the Independent Foundation of State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM10X05) are gratefully acknowledged
文摘The rupture and movement scope of overlying strata upon the longwall mining face increased sharply as the exploitation scale and degree growing recently,and the spatial structure formed by fractured strata became much more complex.The overlying strata above the working face and adjacent gobs would affect each other and move cooperatively because small pillar can hardly separate the connection of overlying strata between two workfaces,which leads to mining seismicity in the gob and induces rockburst disaster that named spatial structure instability rockburst in this paper.Based on the key stratum theory,the F-structure model was established to describe the overlying strata characteristic and rockburst mechanism of workface with one side of gob and the other side un-mined solid coal seam.The results show that F-structure in the gob will re-active and loss stability under the influence of neighboring mining,and fracture and shear slipping in the process of instability is the mechanism of the seismicity in the gob.The F-structure was divided into two categories that short-arm F and long-arm F structure based on the state of strata above the gob.We studied the underground pressure rules of different F-structure and instability mechanism,thus provide the guide for prevention and control of the F-structure spatial instability rockburst.The micro-seismic system is used for on-site monitoring and researching the distribution rules of seismic events,the results confrmed the existence and correct of F-spatial structure.At last specialized methods for prevention seismicity and rockburst induced by F-structure instability are proposed and applied in Huating Coal Mine.
文摘The properties of broken rock before and after grouting reinforcement are studied. Testing results show that grouting can raise the residual strength of broken rock, and the broken rockness by grouting can keep the steady supporting capacity within a relatively large deformation range. Revealing of the characteristics of stage deformation and damage process comes to the conclusion that the supporting of soft rock roadway should be analyzed in a dynamic view, and the grouting should be delayed at a proper occasion. Based on the above, the stepwise reinforcement technology characterized by immediate shotcreting, timely bolting and delay grouting is put forward and illustrated with a successful engineering practice.
基金This research is supported by the National Natural Science Foundation of China(51874289)and the National Key Research and Development Program of China(2018YFC0604705)and the Fundamental Research Funds for the Central Universities 2018ZDPY05.There is no conflict of interest regarding the publication of this paper.
文摘The changeable structure and movement law of overlying strata are the maincontributor to the change of mining stress.Starting from the relevant theory of keystratum and particularly based on the theory of mine ground pressure and strata control,this research proposed a new solution to mining stress problems by establishing adual-load-zone stratum structural model.Elastic foundation beam theory was used tosolve the stress of overlying strata of the dual-load-zones with superposition method,which revised the traditional calculation method of mining stress.The abnormal increaseof lead abutment pressure in the mining area was explained effectively,through which theevolution law of mining stress in the case of hard rock was obtained.The results indicatethat mining stress experiences a drastic change within the range of 50 m ahead of the coalwall due to the collapse of main roof;under the influence of main key stratum andinferior key strata,the influence range of lead abutment pressure is extended up toapproximately 120 m in the working face;this remarkable increase can be attributed tothe excessive length of sagging zone.Results from both the dual-load-zone modelexperiment and field measurement demonstrate high consistency.The model can predictthe influence range of abutment pressure effectively and thus guide the safety productionof mining.
基金Supported by the National Basic Research Program of China (2010CB226806)the Visiting Scholar Foundation of Key Laboratory for Exploitation of Southwestern Resources and Environmental Disaster Control Engineeringthe Outstanding Innovation Group Program of Anhui University of Science and Technology
文摘In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental frame for similar material simulation test was used to build the model with the dip of 30°, based on analyses of geological and technological conditions in Huainan mine area, Anhui, China. The strata behaviors, such as extracting- and mining-induced stresses development, deformation and failure modes, were synthetically integrated during working face advancing. Results show that the development characteristics of mining-induced stress and deformation are asymmetrical in the roadway. The strata behaviors are totally different in different sections of the roadway. Because of asymmetrically geometrical structure influenced by increasing dip, strata dislocating, rock falling and breaking occur in roof. Then, squeezing, collapsing and caving of coal happen in upper- and lower-rib due to shearing action caused by asymmetrical roof bending and dislocating. Owing to the absence of supporting, floor heaving is very violent and usually the zone of floor heaving develops from the lower-rib to upper-rib. Engineering practices show that, due to the asymmetrical characteristics of rock pressure and roadway configuration, it is more difficult to implement bolt supporting system to control rock stability of roadways in LDCSs. The upper-rib and roof of entries are the key sections. Consequently, it is reliable to use asymmetrical bolt-mesh-cable supporting system to control rock stability of roadways based on the asymmetrical characteristics of roadway configuration and strata behaviors.
文摘The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding strata as well as the internal friction angle of bedding plane and its cohesion all exert an influence upon the magnitude of the asymmetric rock pressure applied to tunnel. The feature that rock pressure applied to tunnel structure varies with the incUnation angle of bedding strata is discussed, At last, the safety factor, which is utilized to evaluate the working state of tunnel lining structure, is calculated for both symmetric and asymmetric lining structures. The calculation results elucidate that the asymmetric tunnel structure can be more superior to bear rock pressure in comparison with the symmetric one and should be adopted in engineering as far as possible.
基金the National Natural Science Foundation of China(Grant No. 41172106) for financial support of this work
文摘1 Introduction Stratigraphic correlation is the most important basic work in oil and gas exploration and development,Scientific and reasonable stratigraphic correlation is the premise of developing fine reservoir description,and it is
基金Supported by Natural Science Foundation of Henan Province (0311051900)Supported by Fundamental Research Project of Education De-partment of Henan Province (2003440221)
文摘The distributions of strata rock temperature around a driving head with auxil- iary ventilation were analyzed theoretically based on a program which was developed by the authors to predict the thermal environmental conditions in a development heading with forcing auxiliary ventilation. The influences of wetness of the airway surface were dis- cussed on the cooled zone of the strata rock and on the temperature distribution in the surrounding rock. It is shown that the advancing speed and driving time have little influ- ence on the temperature profile in front of the working face of a driving airway, and the rock temperature 1.5 m ahead of the working face can be taken as the virgin rock tem- perature.