Stratabound gold deposits in the western Qinling Mountains occur in Cambrian chert formation composed of carbonaceous chert and carbonaceous slate. The distinctive chert formation provides important grounds for the mi...Stratabound gold deposits in the western Qinling Mountains occur in Cambrian chert formation composed of carbonaceous chert and carbonaceous slate. The distinctive chert formation provides important grounds for the mineralization and controls on the formation of gold deposits. Study shows that Se is exceptionally higher in both host rocks and gold orebodies. It may be recovered as a valuable component in ores for total utilization, and in some localities even independent Se orebodies (which are mined exclusively for Se) may be delineated. In gold ore Se mainly occurs as independent minerals or in the isomorphous form in sulphides and there is a positive correlation between Se and Au.展开更多
The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and ...The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.展开更多
The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the or...The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the orebodies is controlled by the interlayer-slipping faults between the Triassic and Permian strata,and all the orebodies are distributed in stratiform shape around the Mesozoic quartz monzodiorite dikes.Based on field evidence and petrographic observations,four mineralization stages in the Datuanshan deposit have been identified:the skarn,early quartz-sulfide,late quartzsulfide and carbonate stages.Chalcopytite is the main copper mineral and mainly formed at the late quartz-sulfide stage.Fluid inclusions at different stages were studied for petrography,microthermometry,laser Raman spectrometry and stable isotopes.Four types of fluid inclusions,including three-phase fluid inclusions(type 1),liquid-rich fluid inclusions(type 2),vapour-rich fluid inclusions(type 3) and pure vapour fluid inclusions(type 4),were observed.The minerals from the skarn,early and late quartz-sulfide stages contain all fluid inclusion types,but only type 2 fluid inclusions were observed at the carbonate stage.Petrographic observations suggest that most of the inclusions studied in this paper are likely primary.The coexistence of different types of fluid inclusions with contrasting homogenization characteristics(to the liquid and vapour phase,respectively) and similar homogenization temperatures(the modes are 440-480℃,380-400℃ and 280-320℃ for the skarn,early and late quartz-sulfide stages,respectively) in the first three stages,strongly suggests that three episodes of fluid boiling occurred during these stages,which is supported by the hydrogen isotope data.Laser Raman spectra identified CH_4 at the skarn and early quartz-sulfide stages.Combined with other geological features,the early ore-forming fluids were inferred to be under a relatively reduced environment.The CO_2 component has been identified at the late quartz-sulfide and carbonate stages,indicating that the late ore-forming fluids were under a relatively oxidized environment,probably as a result of inflow of and mixing with meteoric water.In addition,microthermometric results of fluid inclusions and H-O isotope data mdicate that the ore forming fluids were dominated by magmatic water in the early stages(skarn and early quartz-sulfide stages) and mixed with meteoric water in the late stages(late quartz-sulfide and carbonate stages).The evidence listed above suggests that the chalcopyrite deposition in the Datuanshan deposit probably resulted from the combination of multiepisode fluid boiling and mixing of magmatic and meteoric water.展开更多
The Paleoproterozoic boron deposits in east Liaoning occur in Mg-rich marble of Li’eryu Formation of Liaohe group. The mineralization was controlled by stratigraphic lithology. The volcano-sedimentation is the materi...The Paleoproterozoic boron deposits in east Liaoning occur in Mg-rich marble of Li’eryu Formation of Liaohe group. The mineralization was controlled by stratigraphic lithology. The volcano-sedimentation is the material base of ore- formation. Boron mainly derived from volcanic source. Boron in Li’ eryu formation was activated and transferred by mignati- zation and then deposited into ore when metasomatism occurrs in Mg-rich marble. Structural deformation reconstructed the boron ore bodies. Meanwhile, ore-bearing hydrothermal solution produced by structural deformation and remetasomated the host-ore rocks or filled in fissure of ore. Boron deposit is a stratabound deposit, which formed by mignatization and structu- ral deformation mineralization.展开更多
基金This study was supported by the National Natural Science Foundation of China (Grant Nos. 49503048 and 49773197), a Sino-Austrian cooperation project (No. 4880099) and the Postdoctoral Science Foundation of China
文摘Stratabound gold deposits in the western Qinling Mountains occur in Cambrian chert formation composed of carbonaceous chert and carbonaceous slate. The distinctive chert formation provides important grounds for the mineralization and controls on the formation of gold deposits. Study shows that Se is exceptionally higher in both host rocks and gold orebodies. It may be recovered as a valuable component in ores for total utilization, and in some localities even independent Se orebodies (which are mined exclusively for Se) may be delineated. In gold ore Se mainly occurs as independent minerals or in the isomorphous form in sulphides and there is a positive correlation between Se and Au.
基金MGMR Eighth Five- Year Plan Basic Geology Research Foundation Grant 8502216China National Natural Science Foundation Grant 49173169
文摘The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.
基金supported financially by the National Natural Science Foundation of China(grant 41302062)the Fundamental Research Funds for the Central Universities(grant 2652015053,2011YYL125)the China Geological Survey(grant 12120113069900)
文摘The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the orebodies is controlled by the interlayer-slipping faults between the Triassic and Permian strata,and all the orebodies are distributed in stratiform shape around the Mesozoic quartz monzodiorite dikes.Based on field evidence and petrographic observations,four mineralization stages in the Datuanshan deposit have been identified:the skarn,early quartz-sulfide,late quartzsulfide and carbonate stages.Chalcopytite is the main copper mineral and mainly formed at the late quartz-sulfide stage.Fluid inclusions at different stages were studied for petrography,microthermometry,laser Raman spectrometry and stable isotopes.Four types of fluid inclusions,including three-phase fluid inclusions(type 1),liquid-rich fluid inclusions(type 2),vapour-rich fluid inclusions(type 3) and pure vapour fluid inclusions(type 4),were observed.The minerals from the skarn,early and late quartz-sulfide stages contain all fluid inclusion types,but only type 2 fluid inclusions were observed at the carbonate stage.Petrographic observations suggest that most of the inclusions studied in this paper are likely primary.The coexistence of different types of fluid inclusions with contrasting homogenization characteristics(to the liquid and vapour phase,respectively) and similar homogenization temperatures(the modes are 440-480℃,380-400℃ and 280-320℃ for the skarn,early and late quartz-sulfide stages,respectively) in the first three stages,strongly suggests that three episodes of fluid boiling occurred during these stages,which is supported by the hydrogen isotope data.Laser Raman spectra identified CH_4 at the skarn and early quartz-sulfide stages.Combined with other geological features,the early ore-forming fluids were inferred to be under a relatively reduced environment.The CO_2 component has been identified at the late quartz-sulfide and carbonate stages,indicating that the late ore-forming fluids were under a relatively oxidized environment,probably as a result of inflow of and mixing with meteoric water.In addition,microthermometric results of fluid inclusions and H-O isotope data mdicate that the ore forming fluids were dominated by magmatic water in the early stages(skarn and early quartz-sulfide stages) and mixed with meteoric water in the late stages(late quartz-sulfide and carbonate stages).The evidence listed above suggests that the chalcopyrite deposition in the Datuanshan deposit probably resulted from the combination of multiepisode fluid boiling and mixing of magmatic and meteoric water.
文摘The Paleoproterozoic boron deposits in east Liaoning occur in Mg-rich marble of Li’eryu Formation of Liaohe group. The mineralization was controlled by stratigraphic lithology. The volcano-sedimentation is the material base of ore- formation. Boron mainly derived from volcanic source. Boron in Li’ eryu formation was activated and transferred by mignati- zation and then deposited into ore when metasomatism occurrs in Mg-rich marble. Structural deformation reconstructed the boron ore bodies. Meanwhile, ore-bearing hydrothermal solution produced by structural deformation and remetasomated the host-ore rocks or filled in fissure of ore. Boron deposit is a stratabound deposit, which formed by mignatization and structu- ral deformation mineralization.