Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect...Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.展开更多
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel...Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.展开更多
One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon o...One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions.展开更多
Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and manageme...Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.展开更多
Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxid...Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production,it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors.Here,we discuss the dose and dose intensity of the causes of oxidative stress involving physiological,environmental and dietary factors,recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.展开更多
Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and e...Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts(meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.展开更多
Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysi...Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.展开更多
Tissue engineering has been striving toward designing and producing natural and functional human tissues.Cells are the fundamental building blocks of tissues.Compared with traditional two-dimensional cultured cells,ce...Tissue engineering has been striving toward designing and producing natural and functional human tissues.Cells are the fundamental building blocks of tissues.Compared with traditional two-dimensional cultured cells,cell spheres are threedimensional(3D)structures that can naturally form complex cell–cell and cell–matrix interactions.This structure is close to the natural environment of cells in living organisms.In addition to being used in disease modeling and drug screening,spheroids have significant potential in tissue regeneration.The 3D bioprinting is an advanced biofabrication technique.It accurately deposits bioinks into predesigned 3D shapes to create complex tissue structures.Although 3D bioprinting is efficient,the time required for cells to develop into complex tissue structures can be lengthy.The 3D bioprinting of spheroids significantly reduces the time required for their development into large tissues/organs during later cultivation stages by printing them with high cell density.Combining spheroid fabrication and bioprinting technology should provide a new solution to many problems in regenerative medicine.This paper systematically elaborates and analyzes the spheroid fabrication methods and 3D bioprinting strategies by introducing spheroids as building blocks.Finally,we present the primary challenges faced by spheroid fabrication and 3D bioprinting with future requirements and some recommendations.展开更多
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re...Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.展开更多
Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurologic...Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurological diseases and injuries is critical to human health.Three-dimensional(3D)printing offers versatility and precision in the fabrication of neural scaffolds.Complex neural structures such as neural tubes and scaffolds can be fabricated via 3Dprinting.This reviewcomprehensively analyzes the current state of 3D-printed neural scaffolds and explores strategies to enhance their design.It highlights therapeutic strategies and structural design involving neural materials and stem cells.First,nerve regeneration materials and their fabrication techniques are outlined.The applications of conductive materials in neural scaffolds are reviewed,and their potential to facilitate neural signal transmission and regeneration is highlighted.Second,the progress in 3D-printed neural scaffolds applied to the peripheral and central nerves is comprehensively evaluated,and their potential to restore neural function and promote the recovery of different nervous systems is emphasized.In addition,various applications of 3D-printed neural scaffolds in peripheral and neurological diseases,as well as the design strategies of multifunctional biomimetic scaffolds,are discussed.展开更多
Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric atta...Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation.Additionally,the reliability of guidance from static teachers diminishes as target models become more robust.This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation(LDAS&ET-AD).Firstly,a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation.A strategy model is introduced to produce attack strategies that enable adversarial examples(AEs)to be created in areas where the target model significantly diverges from the teachers by competing with the target model in minimizing or maximizing the AD loss.Secondly,a teacher evolution strategy is introduced to enhance the reliability and effectiveness of knowledge in improving the generalization performance of the target model.By calculating the experimentally updated target model’s validation performance on both clean samples and AEs,the impact of distillation from each training sample and AE on the target model’s generalization and robustness abilities is assessed to serve as feedback to fine-tune standard and robust teachers accordingly.Experiments evaluate the performance of LDAS&ET-AD against different adversarial attacks on the CIFAR-10 and CIFAR-100 datasets.The experimental results demonstrate that the proposed method achieves a robust precision of 45.39%and 42.63%against AutoAttack(AA)on the CIFAR-10 dataset for ResNet-18 and MobileNet-V2,respectively,marking an improvement of 2.31%and 3.49%over the baseline method.In comparison to state-of-the-art adversarial defense techniques,our method surpasses Introspective Adversarial Distillation,the top-performing method in terms of robustness under AA attack for the CIFAR-10 dataset,with enhancements of 1.40%and 1.43%for ResNet-18 and MobileNet-V2,respectively.These findings demonstrate the effectiveness of our proposed method in enhancing the robustness of deep learning networks(DNNs)against prevalent adversarial attacks when compared to other competing methods.In conclusion,LDAS&ET-AD provides reliable and informative soft labels to one of the most promising defense methods,AT,alleviating the limitations of untrusted teachers and unsuitable AEs in existing AD techniques.We hope this paper promotes the development of DNNs in real-world trust-sensitive fields and helps ensure a more secure and dependable future for artificial intelligence systems.展开更多
Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The lay...Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs.展开更多
Extracellular polymeric substances(EPS)constitutes crucial elements within bacterial biofilms,facili-tating accelerated antimicrobial resistance and conferring defense against the host's immune cells.Developing pr...Extracellular polymeric substances(EPS)constitutes crucial elements within bacterial biofilms,facili-tating accelerated antimicrobial resistance and conferring defense against the host's immune cells.Developing precise and effective antibiofilm approaches and strategies,tailored to the specific charac-teristics of EPS composition,can offer valuable insights for the creation of novel antimicrobial drugs.This,in turn,holds the potential to mitigate the alarming issue of bacterial drug resistance.Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias,which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds.Considering the pivotal role of EPS in biofilm functionality,it is imperative for EPS research to delve deeper into the analysis of intricate compositions,moving beyond the current focus on polymeric materials.This ne-cessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches.In this study,we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions.Additionally,novel strategies aimed at targeting EPS to enhance biofilm penetration were explored,with a specific focus on high-lighting the limitations associated with colorimetric methods.Furthermore,we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges.This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS,thereby inhibiting biofilm formation.This insight opens up a new avenue for exploration within this research domain.展开更多
Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of Se...Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of SeET and DBT on pregnancy outcomes.Methods Totally,261 frozen-thawed embryo transfer cycles of 243 RIF women were included in this multicenter retrospective analysis.According to different embryo quality and transfer strategies,they were divided into four groups:group A,good-quality SeET(GQ-SeET,n=38 cycles);group B,poor-quality or mixed-quality SeET(PQ/MQ-SeET,n=31 cycles);group C,good-quality DBT(GQ-DBT,n=121 cycles);and group D,poor-quality or mixed-quality DBT(PQ/MQ-DBT,n=71 cycles).The main outcome,clinical pregnancy rate,was compared,and the generalized estimating equation(GEE)model was used to correct potential confounders that might impact pregnancy outcomes.Results GQ-DBT achieved a significantly higher clinical pregnancy rate(aOR 2.588,95%CI 1.267–5.284,P=0.009)and live birth rate(aOR 3.082,95%CI 1.482–6.412,P=0.003)than PQ/MQ-DBT.Similarly,the clinical pregnancy rate was significantly higher in GQ-SeET than in PQ/MQ-SeET(aOR 4.047,95%CI 1.218–13.450,P=0.023).The pregnancy outcomes of GQ-SeET were not significantly different from those of GQ-DBT,and the same results were found between PQ/MQ-SeET and PQ/MQ-DBT.Conclusion SeET relative to DBT did not seem to improve pregnancy outcomes for RIF patients if the embryo quality was comparable between the two groups.Better clinical pregnancy outcomes could be obtained by transferring good-quality embryos,no matter whether in SeET or DBT.Embryo quality plays a more important role in pregnancy outcomes for RIF patients.展开更多
Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementi...Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementing this novel targeted cell therapy are increasingly significant.Particularly in the clinical management of solid tumors,obstacles such as the immunosuppressive effects of the tumor microenvironment,limited local tumor infiltration capability of CAR–T cells,heterogeneity of tumor targeting antigens,uncertainties surrounding CAR–T quality,control,and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy.These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach.In this paper,we comprehensively analyze recent preclinical and clinical reports on CAR–T therapy while summarizing crucial factors influencing its efficacy.Furthermore,we aim to identify existing solution strategies and explore their current research status.Through this review article,our objective is to broaden perspectives for further exploration into CAR–T therapy strategies and their clinical applications.展开更多
The behavior issues of preschoolers are closely related to their parents'parenting styles.This editorial discusses the value and strategies for solving behavior issues in preschoolers from the perspectives of mind...The behavior issues of preschoolers are closely related to their parents'parenting styles.This editorial discusses the value and strategies for solving behavior issues in preschoolers from the perspectives of mindfulness and mindful parenting.We expect that upcoming studies will place greater emphasis on the behavioral concerns of preschoolers and the parenting practices that shape them,particularly focusing on proactive interventions for preschoolers'behavioral issues.展开更多
Climate change studies are diverse with no single study giving a comprehensive review of climate change impacts,adaptation strategies,and policy development in West Africa.The unavailability of an all-inclusive study ...Climate change studies are diverse with no single study giving a comprehensive review of climate change impacts,adaptation strategies,and policy development in West Africa.The unavailability of an all-inclusive study to serve as a guide for practitioners affects the effectiveness of climate change adaptation strategies proposed and adopted in the West African sub-region.The purpose of this study was to review the impacts of climate change risks on the crop,fishery,and livestock sectors,as well as the climate change adaptation strategies and climate-related policies aimed at helping to build resilient agricultural production systems in West Africa.The review process followed a series of rigorous stages until the final selection of 56 articles published from 2009 to 2023.Generally,the results highlighted the adverse effects of climate change risks on food security.We found a continuous decline in food crop production.Additionally,the livestock sector experienced morbidity and mortality,as well as reduction in meat and milk production.The fishery sector recorded loss of fingerlings,reduction in fish stocks,and destruction of mariculture and aquaculture.In West Africa,climate-smart agriculture technologies,physical protection of fishing,and inclusion of gender perspectives in programs appear to be the major adaptation strategies.The study therefore recommends the inclusion of ecosystem and biodiversity restoration,weather insurance,replacement of unsafe vessels,and strengthening gender equality in all climate change mitigation programs,as these will help to secure enough food for present and future generations.展开更多
Mucosal ulcers are a common yet often overlooked complication during orthodontic treatment,significantly impacting patient comfort and compliance.This letter aims to highlight the prevalence,potential causes,and manag...Mucosal ulcers are a common yet often overlooked complication during orthodontic treatment,significantly impacting patient comfort and compliance.This letter aims to highlight the prevalence,potential causes,and management strategies for mucosal ulcers in orthodontic patients.By reviewing recent literature and clinical observations,we underscore the necessity for proactive measures and tailored interventions to mitigate the incidence and severity of these lesions.Emphasizing the role of patient education and the use of protective devices,we call for a multidisciplinary approach to enhance patient care and treatment outcomes.This discussion is particularly relevant in the context of evolving orthodontic techniques and materials,which necessitate continuous adaptation of clinical practices to ensure patient safety and well-being.展开更多
Ibrutinib,a targeted therapy for B-cell malignancies,has shown remarkable efficacy in treating various hematologic cancers.However,its clinical use has raised concerns regarding cardiovascular complications,notably at...Ibrutinib,a targeted therapy for B-cell malignancies,has shown remarkable efficacy in treating various hematologic cancers.However,its clinical use has raised concerns regarding cardiovascular complications,notably atrial fibrillation(AF).This comprehensive review critically evaluates the association between ibrutinib and AF by examining incidence,risk factors,mechanistic links,and management strategies.Through an extensive analysis of original research articles,this review elucidates the complex interplay between ibrutinib’s therapeutic benefits and cardiovascular risks.Moreover,it highlights the need for personalized treatment approaches,vigilant monitoring,and interdisciplinary collaboration to optimize patient outcomes and safety in the context of ibrutinib therapy.The review provides a valuable resource for healthcare professionals aiming to navigate the intricacies of ibrutinib’s therapeutic landscape while prioritizing patient well-being.展开更多
The internal carotid artery occlusion caused by head and neck trauma,also known as traumatic intracranial artery occlusion,is relatively rare clinically.Traumatic skull base fracture is a common complication of trauma...The internal carotid artery occlusion caused by head and neck trauma,also known as traumatic intracranial artery occlusion,is relatively rare clinically.Traumatic skull base fracture is a common complication of traumatic brain injury.Traumatic skull base fracture is one of the causes of traumatic internal carotid artery occlusion.If not detected early and treated in time,the prognosis of patients is poor.This editorial makes a relevant analysis of this disease.展开更多
基金support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”“Innovation Research Team of High-Level Local Universities in Shanghai”support from the National Natural Science Foundation of China (22209103)
文摘Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.
基金This work was supported by the National Natural Science Foundation of China(52373306,52172233,and 51832004)the Natural Science Foundation of Hubei Province(2023AFA053)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021CXLH0007).
文摘Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
文摘One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions.
文摘Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
基金supported by Guangzhou Science and Technology Planning Project(2023A04J0131)Special fund for scientific innovation strategyconstruction of high level Academy of Agriculture Science(R2020PY-JG009,R2022PY-QY007,202106TD)+2 种基金China Agriculture Research System-CARS-35the Project of Swine Innovation Team in Guangdong Modern Agricultural Research System(2022KJ126)Special Fund for Rural Revitalization Strategy of Guangdong(2023TS-3),China。
文摘Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production,it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors.Here,we discuss the dose and dose intensity of the causes of oxidative stress involving physiological,environmental and dietary factors,recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.
基金supported by the National Natural Science Foundation of China (31930106 and U22A20514, U23A20232)the National Key R&D Program of China (2022YFD1300404)+2 种基金the 2115 Talent Development Program of China Agricultural University (1041-00109019)the Pinduoduo-China Agricultural University Research Fund (PC2023A01001)the Special Fund for Henan Agriculture Research System (HARS-2213-Z1)。
文摘Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts(meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.
基金financially supported by the National Natural Science Foundation of China(51572166,52102070)the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning(GZ2020012)+4 种基金the Key Research Project of Zhejiang Laboratory(2021PE0AC02)the China Postdoctoral Science Foundation(2021M702073)BAJC R&D Fund Projects(BA23011)Australian Research Council Future Fellowships(FT230100436)the Shanghai Technical Service Center for Advanced Ceramics Structure Design and Precision Manufacturing(20DZ2294000)。
文摘Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.
基金supported by the National Natural Science Foundation of China(Nos.61973206,61703265,61803250,and 61933008)the Shanghai Science and Technology Committee Rising-Star Program(No.19QA1403700)the National Center for Translational Medicine(Shanghai)SHU Branch.
文摘Tissue engineering has been striving toward designing and producing natural and functional human tissues.Cells are the fundamental building blocks of tissues.Compared with traditional two-dimensional cultured cells,cell spheres are threedimensional(3D)structures that can naturally form complex cell–cell and cell–matrix interactions.This structure is close to the natural environment of cells in living organisms.In addition to being used in disease modeling and drug screening,spheroids have significant potential in tissue regeneration.The 3D bioprinting is an advanced biofabrication technique.It accurately deposits bioinks into predesigned 3D shapes to create complex tissue structures.Although 3D bioprinting is efficient,the time required for cells to develop into complex tissue structures can be lengthy.The 3D bioprinting of spheroids significantly reduces the time required for their development into large tissues/organs during later cultivation stages by printing them with high cell density.Combining spheroid fabrication and bioprinting technology should provide a new solution to many problems in regenerative medicine.This paper systematically elaborates and analyzes the spheroid fabrication methods and 3D bioprinting strategies by introducing spheroids as building blocks.Finally,we present the primary challenges faced by spheroid fabrication and 3D bioprinting with future requirements and some recommendations.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.
基金support was received from the Key Research and Development Program of Zhejiang Province,China(No.2023C02040)the Natural Science Foundation of Henan Province,China(No.222300420152)+3 种基金the Medical Science and Technology Research Program of Henan Province,China(No.LHGJ20220677)the National Natural Science Foundation of China(No.32372757)the Innovative Program of Chinese Academy of Agricultural Sciences(Nos.Y2022QC24 and CAASASTIP-2021-TRI)the Postdoctoral Research and Development Fund of West China Hospital,Sichuan University(No.2023HXBH052).
文摘Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurological diseases and injuries is critical to human health.Three-dimensional(3D)printing offers versatility and precision in the fabrication of neural scaffolds.Complex neural structures such as neural tubes and scaffolds can be fabricated via 3Dprinting.This reviewcomprehensively analyzes the current state of 3D-printed neural scaffolds and explores strategies to enhance their design.It highlights therapeutic strategies and structural design involving neural materials and stem cells.First,nerve regeneration materials and their fabrication techniques are outlined.The applications of conductive materials in neural scaffolds are reviewed,and their potential to facilitate neural signal transmission and regeneration is highlighted.Second,the progress in 3D-printed neural scaffolds applied to the peripheral and central nerves is comprehensively evaluated,and their potential to restore neural function and promote the recovery of different nervous systems is emphasized.In addition,various applications of 3D-printed neural scaffolds in peripheral and neurological diseases,as well as the design strategies of multifunctional biomimetic scaffolds,are discussed.
基金the National Key Research and Development Program of China(2021YFB1006200)Major Science and Technology Project of Henan Province in China(221100211200).Grant was received by S.Li.
文摘Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation.Additionally,the reliability of guidance from static teachers diminishes as target models become more robust.This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation(LDAS&ET-AD).Firstly,a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation.A strategy model is introduced to produce attack strategies that enable adversarial examples(AEs)to be created in areas where the target model significantly diverges from the teachers by competing with the target model in minimizing or maximizing the AD loss.Secondly,a teacher evolution strategy is introduced to enhance the reliability and effectiveness of knowledge in improving the generalization performance of the target model.By calculating the experimentally updated target model’s validation performance on both clean samples and AEs,the impact of distillation from each training sample and AE on the target model’s generalization and robustness abilities is assessed to serve as feedback to fine-tune standard and robust teachers accordingly.Experiments evaluate the performance of LDAS&ET-AD against different adversarial attacks on the CIFAR-10 and CIFAR-100 datasets.The experimental results demonstrate that the proposed method achieves a robust precision of 45.39%and 42.63%against AutoAttack(AA)on the CIFAR-10 dataset for ResNet-18 and MobileNet-V2,respectively,marking an improvement of 2.31%and 3.49%over the baseline method.In comparison to state-of-the-art adversarial defense techniques,our method surpasses Introspective Adversarial Distillation,the top-performing method in terms of robustness under AA attack for the CIFAR-10 dataset,with enhancements of 1.40%and 1.43%for ResNet-18 and MobileNet-V2,respectively.These findings demonstrate the effectiveness of our proposed method in enhancing the robustness of deep learning networks(DNNs)against prevalent adversarial attacks when compared to other competing methods.In conclusion,LDAS&ET-AD provides reliable and informative soft labels to one of the most promising defense methods,AT,alleviating the limitations of untrusted teachers and unsuitable AEs in existing AD techniques.We hope this paper promotes the development of DNNs in real-world trust-sensitive fields and helps ensure a more secure and dependable future for artificial intelligence systems.
基金supported by the National Research Foundation(NRF)grants(2022R1A4A1032832 and 2019R1A6A1A10073079)funded by the Korean government(MSIT)
文摘Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs.
基金funded by the National Natural Science Foundation of China(Grant Nos.:81803812,81803237).
文摘Extracellular polymeric substances(EPS)constitutes crucial elements within bacterial biofilms,facili-tating accelerated antimicrobial resistance and conferring defense against the host's immune cells.Developing precise and effective antibiofilm approaches and strategies,tailored to the specific charac-teristics of EPS composition,can offer valuable insights for the creation of novel antimicrobial drugs.This,in turn,holds the potential to mitigate the alarming issue of bacterial drug resistance.Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias,which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds.Considering the pivotal role of EPS in biofilm functionality,it is imperative for EPS research to delve deeper into the analysis of intricate compositions,moving beyond the current focus on polymeric materials.This ne-cessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches.In this study,we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions.Additionally,novel strategies aimed at targeting EPS to enhance biofilm penetration were explored,with a specific focus on high-lighting the limitations associated with colorimetric methods.Furthermore,we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges.This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS,thereby inhibiting biofilm formation.This insight opens up a new avenue for exploration within this research domain.
文摘Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of SeET and DBT on pregnancy outcomes.Methods Totally,261 frozen-thawed embryo transfer cycles of 243 RIF women were included in this multicenter retrospective analysis.According to different embryo quality and transfer strategies,they were divided into four groups:group A,good-quality SeET(GQ-SeET,n=38 cycles);group B,poor-quality or mixed-quality SeET(PQ/MQ-SeET,n=31 cycles);group C,good-quality DBT(GQ-DBT,n=121 cycles);and group D,poor-quality or mixed-quality DBT(PQ/MQ-DBT,n=71 cycles).The main outcome,clinical pregnancy rate,was compared,and the generalized estimating equation(GEE)model was used to correct potential confounders that might impact pregnancy outcomes.Results GQ-DBT achieved a significantly higher clinical pregnancy rate(aOR 2.588,95%CI 1.267–5.284,P=0.009)and live birth rate(aOR 3.082,95%CI 1.482–6.412,P=0.003)than PQ/MQ-DBT.Similarly,the clinical pregnancy rate was significantly higher in GQ-SeET than in PQ/MQ-SeET(aOR 4.047,95%CI 1.218–13.450,P=0.023).The pregnancy outcomes of GQ-SeET were not significantly different from those of GQ-DBT,and the same results were found between PQ/MQ-SeET and PQ/MQ-DBT.Conclusion SeET relative to DBT did not seem to improve pregnancy outcomes for RIF patients if the embryo quality was comparable between the two groups.Better clinical pregnancy outcomes could be obtained by transferring good-quality embryos,no matter whether in SeET or DBT.Embryo quality plays a more important role in pregnancy outcomes for RIF patients.
基金funded by 2023 Sichuan Scientific and Technological Achievements Transformation Project.Project Number:2023JDZH0024.
文摘Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementing this novel targeted cell therapy are increasingly significant.Particularly in the clinical management of solid tumors,obstacles such as the immunosuppressive effects of the tumor microenvironment,limited local tumor infiltration capability of CAR–T cells,heterogeneity of tumor targeting antigens,uncertainties surrounding CAR–T quality,control,and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy.These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach.In this paper,we comprehensively analyze recent preclinical and clinical reports on CAR–T therapy while summarizing crucial factors influencing its efficacy.Furthermore,we aim to identify existing solution strategies and explore their current research status.Through this review article,our objective is to broaden perspectives for further exploration into CAR–T therapy strategies and their clinical applications.
基金Supported by The Education and Teaching Reform Project of the First Clinical College of Chongqing Medical University,No.CMER202305The Natural Science Foundation of Tibet Autonomous Region,No.XZ2024ZR-ZY100(Z).
文摘The behavior issues of preschoolers are closely related to their parents'parenting styles.This editorial discusses the value and strategies for solving behavior issues in preschoolers from the perspectives of mindfulness and mindful parenting.We expect that upcoming studies will place greater emphasis on the behavioral concerns of preschoolers and the parenting practices that shape them,particularly focusing on proactive interventions for preschoolers'behavioral issues.
文摘Climate change studies are diverse with no single study giving a comprehensive review of climate change impacts,adaptation strategies,and policy development in West Africa.The unavailability of an all-inclusive study to serve as a guide for practitioners affects the effectiveness of climate change adaptation strategies proposed and adopted in the West African sub-region.The purpose of this study was to review the impacts of climate change risks on the crop,fishery,and livestock sectors,as well as the climate change adaptation strategies and climate-related policies aimed at helping to build resilient agricultural production systems in West Africa.The review process followed a series of rigorous stages until the final selection of 56 articles published from 2009 to 2023.Generally,the results highlighted the adverse effects of climate change risks on food security.We found a continuous decline in food crop production.Additionally,the livestock sector experienced morbidity and mortality,as well as reduction in meat and milk production.The fishery sector recorded loss of fingerlings,reduction in fish stocks,and destruction of mariculture and aquaculture.In West Africa,climate-smart agriculture technologies,physical protection of fishing,and inclusion of gender perspectives in programs appear to be the major adaptation strategies.The study therefore recommends the inclusion of ecosystem and biodiversity restoration,weather insurance,replacement of unsafe vessels,and strengthening gender equality in all climate change mitigation programs,as these will help to secure enough food for present and future generations.
文摘Mucosal ulcers are a common yet often overlooked complication during orthodontic treatment,significantly impacting patient comfort and compliance.This letter aims to highlight the prevalence,potential causes,and management strategies for mucosal ulcers in orthodontic patients.By reviewing recent literature and clinical observations,we underscore the necessity for proactive measures and tailored interventions to mitigate the incidence and severity of these lesions.Emphasizing the role of patient education and the use of protective devices,we call for a multidisciplinary approach to enhance patient care and treatment outcomes.This discussion is particularly relevant in the context of evolving orthodontic techniques and materials,which necessitate continuous adaptation of clinical practices to ensure patient safety and well-being.
文摘Ibrutinib,a targeted therapy for B-cell malignancies,has shown remarkable efficacy in treating various hematologic cancers.However,its clinical use has raised concerns regarding cardiovascular complications,notably atrial fibrillation(AF).This comprehensive review critically evaluates the association between ibrutinib and AF by examining incidence,risk factors,mechanistic links,and management strategies.Through an extensive analysis of original research articles,this review elucidates the complex interplay between ibrutinib’s therapeutic benefits and cardiovascular risks.Moreover,it highlights the need for personalized treatment approaches,vigilant monitoring,and interdisciplinary collaboration to optimize patient outcomes and safety in the context of ibrutinib therapy.The review provides a valuable resource for healthcare professionals aiming to navigate the intricacies of ibrutinib’s therapeutic landscape while prioritizing patient well-being.
基金Supported by the Science and Technology Program of Nantong Health Committee,No.MA2019003 and No.MA2021017Science and Technology Program of Nantong City,No.Key003 and No.JCZ2022040Kangda College of Nanjing Medical University,No.KD2021JYYJYB025,No.KD2022KYJJZD019,and No.KD2022KYJJZD022.
文摘The internal carotid artery occlusion caused by head and neck trauma,also known as traumatic intracranial artery occlusion,is relatively rare clinically.Traumatic skull base fracture is a common complication of traumatic brain injury.Traumatic skull base fracture is one of the causes of traumatic internal carotid artery occlusion.If not detected early and treated in time,the prognosis of patients is poor.This editorial makes a relevant analysis of this disease.