The procedure of stratified double quartile ranked set sampling (SDQRSS) method is introduced to estimate the population mean. The SDQRSS is compared with the simple random sampling (SRS), stratified ranked set sa...The procedure of stratified double quartile ranked set sampling (SDQRSS) method is introduced to estimate the population mean. The SDQRSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple random sampling (SSRS). It is shown that SDQRSS estimator is an unbiased of the population mean and more efficient than SRS, SRSS and SSRS for symmetric and asymmetric distributions. In addition, by SDQRSS we can increase the efficiency of mean estimator for specific value of the sample size.展开更多
Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty ...Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems.展开更多
In stratified survey sampling, sometimes we have complete auxiliary information. One of the fundamental questions is how to effectively use the complete auxiliary information at the estimation stage. In this paper, we...In stratified survey sampling, sometimes we have complete auxiliary information. One of the fundamental questions is how to effectively use the complete auxiliary information at the estimation stage. In this paper, we extend the model-calibration method to obtain estimators of the finite population mean by using complete auxiliary information from stratified sampling survey data. We show that the resulting estimators effectively use auxiliary information at the estimation stage and possess a number of attractive features such as asymptotically design-unbiased irrespective of the working model and approximately model-unbiased under the model. When a linear working-model is used, the resulting estimators reduce to the usual calibration estimator(or GREG).展开更多
The curve of relationship between fatigue crack growth rate and the stress strength factor amplitude represented an important fatigue property in designing of damage tolerance limits and predicting life of metallic co...The curve of relationship between fatigue crack growth rate and the stress strength factor amplitude represented an important fatigue property in designing of damage tolerance limits and predicting life of metallic component parts. In order to have a more reasonable use of testing data, samples from population were stratified suggested by the stratified random sample model (SRAM). The data in each stratum corresponded to the same experiment conditions. A suitable weight was assigned to each stratified sample according to the actual working states of the pressure vessel, so that the estimation of fatigue crack growth rate equation was more accurate for practice. An empirical study shows that the SRAM estimation by using fatigue crack growth rate data from different stoves is obviously better than the estimation from simple random sample model.展开更多
Variance is one of the most vital measures of dispersion widely employed in practical aspects.A commonly used approach for variance estimation is the traditional method of moments that is strongly influenced by the pr...Variance is one of the most vital measures of dispersion widely employed in practical aspects.A commonly used approach for variance estimation is the traditional method of moments that is strongly influenced by the presence of extreme values,and thus its results cannot be relied on.Finding momentum from Koyuncu’s recent work,the present paper focuses first on proposing two classes of variance estimators based on linear moments(L-moments),and then employing them with auxiliary data under double stratified sampling to introduce a new class of calibration variance estimators using important properties of L-moments(L-location,L-cv,L-variance).Three populations are taken into account to assess the efficiency of the new estimators.The first and second populations are concerned with artificial data,and the third populations is concerned with real data.The percentage relative efficiency of the proposed estimators over existing ones is evaluated.In the presence of extreme values,our findings depict the superiority and high efficiency of the proposed classes over traditional classes.Hence,when auxiliary data is available along with extreme values,the proposed classes of estimators may be implemented in an extensive variety of sampling surveys.展开更多
In general the accuracy of mean estimator can be improved by stratified random sampling. In this paper, we provide an idea different from empirical methods that the accuracy can be more improved through bootstrap resa...In general the accuracy of mean estimator can be improved by stratified random sampling. In this paper, we provide an idea different from empirical methods that the accuracy can be more improved through bootstrap resampling method under some conditions. The determination of sample size by bootstrap method is also discussed, and a simulation is made to verify the accuracy of the proposed method. The simulation results show that the sample size based on bootstrapping is smaller than that based on central limit theorem.展开更多
In this paper, analysis of methodology was realized for the application of stratified random sampling with optimum allocation in the case of a subject of research which concerns the rural population and presents high ...In this paper, analysis of methodology was realized for the application of stratified random sampling with optimum allocation in the case of a subject of research which concerns the rural population and presents high differentiations among the three strata in which this population could be classified. The rural population of Evros Prefecture (Greece) with criterion the mean altitude of settlements was classified in three strata, the mountainous, semi-mountainous and fiat population for the estimation of mean consumption of forest fuelwood for covering of heating and cooking needs in households of these three strata. The analysis of this methodology includes: (1) the determination of total size of sample for entire the rural population and its allocation to the various strata; (2) the investigation of effectiveness of stratification with the technique of analysis of variance (One-Way ANOVA); (3) the conduct of sampling research with the realization of face-to-face interviews in selected households and (4) the control of forms of the questionnaire and the analysis of data by using the statistical package for social sciences, SPSS for Windows. All data for the analysis of this methodology and its practical application were taken by the pilot sampling which was realized in each stratum. Relative paper was not found by the review of literature.展开更多
In this study, we propose a two stage randomized response model. Improved unbiased estimators of the mean number of persons possessing a rare sensitive attribute under two different situations are proposed. The propos...In this study, we propose a two stage randomized response model. Improved unbiased estimators of the mean number of persons possessing a rare sensitive attribute under two different situations are proposed. The proposed estimators are evaluated using a relative efficiency comparison. It is shown that our estimators are efficient as compared to existing estimators when the parameter of rare unrelated attribute is known and in unknown case, depending on the probability of selecting a question.展开更多
In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by ...In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by making use of the local polynomial regression estimation to predict the nonsampled values of the survey variable y. The performance of the proposed estimator is investigated against some design-based and model-based regression estimators. The simulation experiments show that the resulting estimator exhibits good properties. Generally, good confidence intervals are seen for the nonparametric regression estimators, and use of the proposed estimator leads to relatively smaller values of RE compared to other estimators.展开更多
Many operations carried out by official statistical institutes use large-scale surveys obtained by stratified random sampling without replacement. Variables commonly examined in this type of surveys are binary, catego...Many operations carried out by official statistical institutes use large-scale surveys obtained by stratified random sampling without replacement. Variables commonly examined in this type of surveys are binary, categorical and continuous, and hence, the estimates of interest involve estimates of proportions, totals and means. The problem of approximating the sampling relative error of this kind of estimates is studied in this paper. Some new jackknife methods are proposed and compared with plug-in and bootstrap methods. An extensive simulation study is carried out to compare the behavior of all the methods considered in this paper.展开更多
Climate change has become a global phenomenon and is adversely affecting agricultural development across the globe.Developing countries like Pakistan where 18.9%of the GDP(gross domestic product)came from the agricult...Climate change has become a global phenomenon and is adversely affecting agricultural development across the globe.Developing countries like Pakistan where 18.9%of the GDP(gross domestic product)came from the agriculture sector and also 42%of the labor force involved in agriculture.They are directly and indirectly affected by climate change due to an increase in the frequency and intensity of climatic extreme events such as floods,droughts and extreme weather events.In this paper,we have focused on the impact of climate change on farm households and their adaptation strategies to cope up the climatic extremes.For this purpose,we have selected farm households by using multistage stratified random sampling from four districts of the Potohar region i.e.Attock,Rawalpindi,Jhelum and Chakwal.These districts were selected by dividing the Potohar region into rain-fed areas.We have employed logistic regression to assess the determinants of adaptation to climate change and its impact.We have also calculated the marginal effect of each independent variable of the logistic regression to measure the immediate rate of change in the model.In order to check the significance of our suggested model,we have used hypothesis testing.展开更多
Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improv...Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improve the precision of survey estimates with cost-effective sampling efforts. We developed a simulation approach to evaluate and optimize the stratification scheme for a fishery-independent survey with multiple goals including estimation of abundance indices of individual species and species diversity indices. We compared the performances of the sampling designs with different stratification schemes for different goals over different months. Gains in precision of survey estimates from the stratification schemes were acquired compared to simple random sampling design for most indices. The stratification scheme with five strata performed the best. This study showed that the loss of precision of survey estimates due to the reduction of sampling efforts could be compensated by improved stratification schemes, which would reduce the cost and negative impacts of survey trawling on those species with low abundance in the fishery-independent survey. This study also suggests that optimization of a survey design differed with different survey objectives. A post-survey analysis can improve the stratification scheme of fishery-independent survey designs.展开更多
Natural resource statistics are often unavailable for small ecological or economic regions and policymakers have to rely on state-level datasets to evaluate the status of their resources (i.e., forests, rangelands, g...Natural resource statistics are often unavailable for small ecological or economic regions and policymakers have to rely on state-level datasets to evaluate the status of their resources (i.e., forests, rangelands, grasslands, agriculture, etc.) at the regional or local level. These resources can be evaluated using small-area estimation techniques. However, it is unknown which small area technique produces the most valid and precise results. The reliability and accuracy of two methods, synthetic and regression estimators, used in smallarea analyses, were examined in this study. The two small-area analysis methods were applied to data from Jalisco's state-wide natural resource inventory to examine how well each technique predicted selected characteristics of forest stand structure. The regression method produced the most valid and precise estimates of forest stand characteristics at multiple geographical scales. Therefore, state and local resource managers should utilize the regression method unless appropriate auxiliary information is not available.展开更多
Variance is one of themost important measures of descriptive statistics and commonly used for statistical analysis.The traditional second-order central moment based variance estimation is a widely utilized methodology...Variance is one of themost important measures of descriptive statistics and commonly used for statistical analysis.The traditional second-order central moment based variance estimation is a widely utilized methodology.However,traditional variance estimator is highly affected in the presence of extreme values.So this paper initially,proposes two classes of calibration estimators based on an adaptation of the estimators recently proposed by Koyuncu and then presents a new class of L-Moments based calibration variance estimators utilizing L-Moments characteristics(L-location,Lscale,L-CV)and auxiliary information.It is demonstrated that the proposed L-Moments based calibration variance estimators are more efficient than adapted ones.Artificial data is considered for assessing the performance of the proposed estimators.We also demonstrated an application related to apple fruit for purposes of the article.Using artificial and real data sets,percentage relative efficiency(PRE)of the proposed class of estimators with respect to adapted ones are calculated.The PRE results indicate to the superiority of the proposed class over adapted ones in the presence of extreme values.In this manner,the proposed class of estimators could be applied over an expansive range of survey sampling whenever auxiliary information is available in the presence of extreme values.展开更多
This paper reveaed some problems of the forest samling investigation from application.and pointed out the defects. Determining sample size method was precisely put forward from formla's origin in simple random Sam...This paper reveaed some problems of the forest samling investigation from application.and pointed out the defects. Determining sample size method was precisely put forward from formla's origin in simple random Samling procedure In stratified random samgling, two cases were distinguished: the variances Sh2 are equal for all h and not all Sh2 are equal This method made the assertion of making confidence interval more reliable.展开更多
Coverage of nominal 95% confidence intervals of a proportion estimated from a sample obtained under a complex survey design, or a proportion estimated from a ratio of two random variables, can depart significantly fro...Coverage of nominal 95% confidence intervals of a proportion estimated from a sample obtained under a complex survey design, or a proportion estimated from a ratio of two random variables, can depart significantly from its target. Effective calibration methods exist for intervals for a proportion derived from a single binary study variable, but not for estimates of thematic classification accuracy. To promote a calibration of confidence intervals within the context of land-cover mapping, this study first illustrates a common problem of under and over-coverage with standard confidence intervals, and then proposes a simple and fast calibration that more often than not will improve coverage. The demonstration is with simulated sampling from a classified map with four classes, and a reference class known for every unit in a population of 160,000 units arranged in a square array. The simulations include four common probability sampling designs for accuracy assessment, and three sample sizes. Statistically significant over- and under-coverage was present in estimates of user’s (UA) and producer’s accuracy (PA) as well as in estimates of class area proportion. A calibration with Bayes intervals for UA and PA was most efficient with smaller sample sizes and two cluster sampling designs.展开更多
Random forest model is the mainstream research method used to accurately describe the distribution law and impact mechanism of regional population.We took Shijiazhuang as the research area,with comprehensive zoning ba...Random forest model is the mainstream research method used to accurately describe the distribution law and impact mechanism of regional population.We took Shijiazhuang as the research area,with comprehensive zoning based on endowments as the modeling unit,conducted stratified sampling on a hectare grid cell,and systematically carried out incremental selection experiments of population density impact factors,optimizing the population density random forest model throughout the process(zonal modeling,stratified sampling,factor selection,weighted output).The results are as follows:(1)Zonal modeling addresses the issue of confusion in population distribution laws caused by a single model.Sampling on a grid cell not only ensures the quality of training data by avoiding the modifiable areal unit problem(MAUP)but also attempts to mitigate the adverse effects of the ecological fallacy.Stratified sampling ensures the stability of population density label values(target variable)in the training sample.(2)Zonal selection experiments on population density impact factors help identify suitable combinations of factors,leading to a significant improvement in the goodness of fit(R^(2))of the zonal models.(3)Weighted combination output of the population density prediction dataset substantially enhances the model's robustness.(4)The population density dataset exhibits multi-scale superposition characteristics.On a large scale,the population density in plains is higher than that in mountainous areas,while on a small scale,urban areas have higher density compared to rural areas.The optimization scheme for the population density random forest model that we propose offers a unified technical framework for uncovering local population distribution law and the impact mechanisms.展开更多
Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure...Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure modes. In the presented method, the variable space is divided into several disjoint subspace by n-dimensional coordinate planes at the mean point of the random vec- tor, and the importance sampling functions in the subspaces are constructed by keeping the sampling center at the mean point and augmenting the standard deviation by a factor of 2. The sample size generated from the importance sampling function in each subspace is determined by the contribution of the subspace to the reliability sensitivity, which can be estimated by iterative simulation in the sampling process. The formulae of the reliability sensitivity estimation, the variance and the coefficient of variation are derived for the presented SISM. Comparing with the Monte Carlo method, the stratified sampling method and the importance sampling method, the presented SISM has wider applicability and higher calculation efficiency, which is demonstrated by numerical examples. Finally, the reliability sensitivity analysis of flap structure is illustrated that the SISM can be applied to engineering structure.展开更多
Rather than the difficulties of highly non-linear and non-Gaussian observation process and the state distribution in single target tracking, the presence of a large, varying number of targets and their interactions pl...Rather than the difficulties of highly non-linear and non-Gaussian observation process and the state distribution in single target tracking, the presence of a large, varying number of targets and their interactions place more challenge on visual tracking. To overcome these difficulties, we formulate multiple targets tracking problem in a dynamic Markov network which consists of three coupled Markov random fields that model the following: a field for joint state of multi-target, one binary process for existence of individual target, and another binary process for occlusion of dual adjacent targets. By introducing two robust functions, we eliminate the two binary processes, and then apply a novel version of belief propagation called sequential stratified sampling belief propagation algorithm to obtain the maximum a posteriori (MAP) estimation in the dynamic Markov network, By using stratified sampler, we incorporate bottom-up information provided by a learned detector (e.g. SVM classifier) and belief information for the messages updating. Other low-level visual cues (e.g. color and shape) can be easily incorporated in our multi-target tracking model to obtain better tracking results. Experimental results suggest that our method is comparable to the state-of-the-art multiple targets tracking methods in several test cases.展开更多
Stratified random survey is commonly used to estimate abundance indices of fish populations in multispecies survey,providing reliable data for stock assessment and fisheries management.In some cases,however,the sample...Stratified random survey is commonly used to estimate abundance indices of fish populations in multispecies survey,providing reliable data for stock assessment and fisheries management.In some cases,however,the sample size is relatively small because of the limitation of survey cost or other factors.The allocation methods of sampling efforts among strata in stratified random surveys with small sample size may need adjustment compared with traditional approaches.In this study,two sampling stations were allocated to each stratum first and then the remaining sampling units were allocated among strata using five traditional allocation methods.In order to distinguish them from traditional methods,we called them adjusted methods in this study.A simulation study was conducted to compare the performances of different allocation strategies of sampling efforts in a stratified random survey for estimating abundance indices of multiple target species.Relative estimation error(REE)and relative bias(RB)were used to measure the precision and accuracy of estimates of abundance indices under different allocation schemes of sampling efforts in the multispecies survey.The performances of different allocation schemes in estimating abundance indices varied greatly for different species over different seasons.The adjusted Neyman allocation scheme could significantly reduce the REE and RB of estimates of abundance index for single species survey.For multiple species surveys,the adjusted average-Neyman allocation method,the adjusted Yate allocation method,the adjusted proportional allocation method and current allocation method had relatively high accuracy and precision of estimates of abundance indices for four species in terms of the total_(REE) and total_(RB).Though the adjusted average-Neyman allocation scheme did not always have the best performance,it was the optimal one considering the accuracy and precision of estimates of abundance indices for all species simultaneously.The allocation of sampling efforts among strata in stratified random surveys targeting for estimating abundance indices of multiple species should comprehensively consider the variance of abundance of different species in stratum and the seasonal changes.展开更多
文摘The procedure of stratified double quartile ranked set sampling (SDQRSS) method is introduced to estimate the population mean. The SDQRSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple random sampling (SSRS). It is shown that SDQRSS estimator is an unbiased of the population mean and more efficient than SRS, SRSS and SSRS for symmetric and asymmetric distributions. In addition, by SDQRSS we can increase the efficiency of mean estimator for specific value of the sample size.
基金funding support from the China Scholarship Council(CSC).
文摘Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems.
基金Supported by the National Natural Science Foundation of China(10571093)
文摘In stratified survey sampling, sometimes we have complete auxiliary information. One of the fundamental questions is how to effectively use the complete auxiliary information at the estimation stage. In this paper, we extend the model-calibration method to obtain estimators of the finite population mean by using complete auxiliary information from stratified sampling survey data. We show that the resulting estimators effectively use auxiliary information at the estimation stage and possess a number of attractive features such as asymptotically design-unbiased irrespective of the working model and approximately model-unbiased under the model. When a linear working-model is used, the resulting estimators reduce to the usual calibration estimator(or GREG).
文摘The curve of relationship between fatigue crack growth rate and the stress strength factor amplitude represented an important fatigue property in designing of damage tolerance limits and predicting life of metallic component parts. In order to have a more reasonable use of testing data, samples from population were stratified suggested by the stratified random sample model (SRAM). The data in each stratum corresponded to the same experiment conditions. A suitable weight was assigned to each stratified sample according to the actual working states of the pressure vessel, so that the estimation of fatigue crack growth rate equation was more accurate for practice. An empirical study shows that the SRAM estimation by using fatigue crack growth rate data from different stoves is obviously better than the estimation from simple random sample model.
基金The authors thank the Deanship of Scientific Research at King Khalid University,Kingdom of Saudi Arabia for funding this study through the research groups program under Project Number R.G.P.1/64/42.Ishfaq Ahmad and Ibrahim Mufrah Almanjahie received the grant.
文摘Variance is one of the most vital measures of dispersion widely employed in practical aspects.A commonly used approach for variance estimation is the traditional method of moments that is strongly influenced by the presence of extreme values,and thus its results cannot be relied on.Finding momentum from Koyuncu’s recent work,the present paper focuses first on proposing two classes of variance estimators based on linear moments(L-moments),and then employing them with auxiliary data under double stratified sampling to introduce a new class of calibration variance estimators using important properties of L-moments(L-location,L-cv,L-variance).Three populations are taken into account to assess the efficiency of the new estimators.The first and second populations are concerned with artificial data,and the third populations is concerned with real data.The percentage relative efficiency of the proposed estimators over existing ones is evaluated.In the presence of extreme values,our findings depict the superiority and high efficiency of the proposed classes over traditional classes.Hence,when auxiliary data is available along with extreme values,the proposed classes of estimators may be implemented in an extensive variety of sampling surveys.
基金The Science Research Start-up Foundation for Young Teachers of Southwest Jiaotong University(No.2007Q091)
文摘In general the accuracy of mean estimator can be improved by stratified random sampling. In this paper, we provide an idea different from empirical methods that the accuracy can be more improved through bootstrap resampling method under some conditions. The determination of sample size by bootstrap method is also discussed, and a simulation is made to verify the accuracy of the proposed method. The simulation results show that the sample size based on bootstrapping is smaller than that based on central limit theorem.
文摘In this paper, analysis of methodology was realized for the application of stratified random sampling with optimum allocation in the case of a subject of research which concerns the rural population and presents high differentiations among the three strata in which this population could be classified. The rural population of Evros Prefecture (Greece) with criterion the mean altitude of settlements was classified in three strata, the mountainous, semi-mountainous and fiat population for the estimation of mean consumption of forest fuelwood for covering of heating and cooking needs in households of these three strata. The analysis of this methodology includes: (1) the determination of total size of sample for entire the rural population and its allocation to the various strata; (2) the investigation of effectiveness of stratification with the technique of analysis of variance (One-Way ANOVA); (3) the conduct of sampling research with the realization of face-to-face interviews in selected households and (4) the control of forms of the questionnaire and the analysis of data by using the statistical package for social sciences, SPSS for Windows. All data for the analysis of this methodology and its practical application were taken by the pilot sampling which was realized in each stratum. Relative paper was not found by the review of literature.
文摘In this study, we propose a two stage randomized response model. Improved unbiased estimators of the mean number of persons possessing a rare sensitive attribute under two different situations are proposed. The proposed estimators are evaluated using a relative efficiency comparison. It is shown that our estimators are efficient as compared to existing estimators when the parameter of rare unrelated attribute is known and in unknown case, depending on the probability of selecting a question.
文摘In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by making use of the local polynomial regression estimation to predict the nonsampled values of the survey variable y. The performance of the proposed estimator is investigated against some design-based and model-based regression estimators. The simulation experiments show that the resulting estimator exhibits good properties. Generally, good confidence intervals are seen for the nonparametric regression estimators, and use of the proposed estimator leads to relatively smaller values of RE compared to other estimators.
基金supported by the Galician Official Statistical Institute(IGE)and by Grants 10DPI105003PRCN2012/130 from Xunta de Galicia(Spain)by Grant number MTM2011-22392 from Ministerio de Ciencia e Innovacion(Spain).
文摘Many operations carried out by official statistical institutes use large-scale surveys obtained by stratified random sampling without replacement. Variables commonly examined in this type of surveys are binary, categorical and continuous, and hence, the estimates of interest involve estimates of proportions, totals and means. The problem of approximating the sampling relative error of this kind of estimates is studied in this paper. Some new jackknife methods are proposed and compared with plug-in and bootstrap methods. An extensive simulation study is carried out to compare the behavior of all the methods considered in this paper.
文摘Climate change has become a global phenomenon and is adversely affecting agricultural development across the globe.Developing countries like Pakistan where 18.9%of the GDP(gross domestic product)came from the agriculture sector and also 42%of the labor force involved in agriculture.They are directly and indirectly affected by climate change due to an increase in the frequency and intensity of climatic extreme events such as floods,droughts and extreme weather events.In this paper,we have focused on the impact of climate change on farm households and their adaptation strategies to cope up the climatic extremes.For this purpose,we have selected farm households by using multistage stratified random sampling from four districts of the Potohar region i.e.Attock,Rawalpindi,Jhelum and Chakwal.These districts were selected by dividing the Potohar region into rain-fed areas.We have employed logistic regression to assess the determinants of adaptation to climate change and its impact.We have also calculated the marginal effect of each independent variable of the logistic regression to measure the immediate rate of change in the model.In order to check the significance of our suggested model,we have used hypothesis testing.
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.201305030the Specialized Research Fund for the Doctoral Program of Higher Education under contract No.20120132130001
文摘Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improve the precision of survey estimates with cost-effective sampling efforts. We developed a simulation approach to evaluate and optimize the stratification scheme for a fishery-independent survey with multiple goals including estimation of abundance indices of individual species and species diversity indices. We compared the performances of the sampling designs with different stratification schemes for different goals over different months. Gains in precision of survey estimates from the stratification schemes were acquired compared to simple random sampling design for most indices. The stratification scheme with five strata performed the best. This study showed that the loss of precision of survey estimates due to the reduction of sampling efforts could be compensated by improved stratification schemes, which would reduce the cost and negative impacts of survey trawling on those species with low abundance in the fishery-independent survey. This study also suggests that optimization of a survey design differed with different survey objectives. A post-survey analysis can improve the stratification scheme of fishery-independent survey designs.
文摘Natural resource statistics are often unavailable for small ecological or economic regions and policymakers have to rely on state-level datasets to evaluate the status of their resources (i.e., forests, rangelands, grasslands, agriculture, etc.) at the regional or local level. These resources can be evaluated using small-area estimation techniques. However, it is unknown which small area technique produces the most valid and precise results. The reliability and accuracy of two methods, synthetic and regression estimators, used in smallarea analyses, were examined in this study. The two small-area analysis methods were applied to data from Jalisco's state-wide natural resource inventory to examine how well each technique predicted selected characteristics of forest stand structure. The regression method produced the most valid and precise estimates of forest stand characteristics at multiple geographical scales. Therefore, state and local resource managers should utilize the regression method unless appropriate auxiliary information is not available.
基金The authors are grateful to the Deanship of Scientific Research at King Khalid University,Kingdom of Saudi Arabia for funding this study through the research groups program under project number R.G.P.2/67/41.Ibrahim Mufrah Almanjahie received the grant.
文摘Variance is one of themost important measures of descriptive statistics and commonly used for statistical analysis.The traditional second-order central moment based variance estimation is a widely utilized methodology.However,traditional variance estimator is highly affected in the presence of extreme values.So this paper initially,proposes two classes of calibration estimators based on an adaptation of the estimators recently proposed by Koyuncu and then presents a new class of L-Moments based calibration variance estimators utilizing L-Moments characteristics(L-location,Lscale,L-CV)and auxiliary information.It is demonstrated that the proposed L-Moments based calibration variance estimators are more efficient than adapted ones.Artificial data is considered for assessing the performance of the proposed estimators.We also demonstrated an application related to apple fruit for purposes of the article.Using artificial and real data sets,percentage relative efficiency(PRE)of the proposed class of estimators with respect to adapted ones are calculated.The PRE results indicate to the superiority of the proposed class over adapted ones in the presence of extreme values.In this manner,the proposed class of estimators could be applied over an expansive range of survey sampling whenever auxiliary information is available in the presence of extreme values.
文摘This paper reveaed some problems of the forest samling investigation from application.and pointed out the defects. Determining sample size method was precisely put forward from formla's origin in simple random Samling procedure In stratified random samgling, two cases were distinguished: the variances Sh2 are equal for all h and not all Sh2 are equal This method made the assertion of making confidence interval more reliable.
文摘Coverage of nominal 95% confidence intervals of a proportion estimated from a sample obtained under a complex survey design, or a proportion estimated from a ratio of two random variables, can depart significantly from its target. Effective calibration methods exist for intervals for a proportion derived from a single binary study variable, but not for estimates of thematic classification accuracy. To promote a calibration of confidence intervals within the context of land-cover mapping, this study first illustrates a common problem of under and over-coverage with standard confidence intervals, and then proposes a simple and fast calibration that more often than not will improve coverage. The demonstration is with simulated sampling from a classified map with four classes, and a reference class known for every unit in a population of 160,000 units arranged in a square array. The simulations include four common probability sampling designs for accuracy assessment, and three sample sizes. Statistically significant over- and under-coverage was present in estimates of user’s (UA) and producer’s accuracy (PA) as well as in estimates of class area proportion. A calibration with Bayes intervals for UA and PA was most efficient with smaller sample sizes and two cluster sampling designs.
基金National Natural Science Foundation of China,No.42071167,No.42201197,No.40871073The Second Tibetan Plateau Scientific Expedition and Research Program,No.2019QZKK0406Natural Science Foundation of Hebei Province,No.D2007000272。
文摘Random forest model is the mainstream research method used to accurately describe the distribution law and impact mechanism of regional population.We took Shijiazhuang as the research area,with comprehensive zoning based on endowments as the modeling unit,conducted stratified sampling on a hectare grid cell,and systematically carried out incremental selection experiments of population density impact factors,optimizing the population density random forest model throughout the process(zonal modeling,stratified sampling,factor selection,weighted output).The results are as follows:(1)Zonal modeling addresses the issue of confusion in population distribution laws caused by a single model.Sampling on a grid cell not only ensures the quality of training data by avoiding the modifiable areal unit problem(MAUP)but also attempts to mitigate the adverse effects of the ecological fallacy.Stratified sampling ensures the stability of population density label values(target variable)in the training sample.(2)Zonal selection experiments on population density impact factors help identify suitable combinations of factors,leading to a significant improvement in the goodness of fit(R^(2))of the zonal models.(3)Weighted combination output of the population density prediction dataset substantially enhances the model's robustness.(4)The population density dataset exhibits multi-scale superposition characteristics.On a large scale,the population density in plains is higher than that in mountainous areas,while on a small scale,urban areas have higher density compared to rural areas.The optimization scheme for the population density random forest model that we propose offers a unified technical framework for uncovering local population distribution law and the impact mechanisms.
基金National Natural Science Foundation of China (10572117,10802063,50875213)Aeronautical Science Foundation of China (2007ZA53012)+1 种基金New Century Program For Excellent Talents of Ministry of Education of China (NCET-05-0868)National High-tech Research and Development Program (2007AA04Z401)
文摘Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure modes. In the presented method, the variable space is divided into several disjoint subspace by n-dimensional coordinate planes at the mean point of the random vec- tor, and the importance sampling functions in the subspaces are constructed by keeping the sampling center at the mean point and augmenting the standard deviation by a factor of 2. The sample size generated from the importance sampling function in each subspace is determined by the contribution of the subspace to the reliability sensitivity, which can be estimated by iterative simulation in the sampling process. The formulae of the reliability sensitivity estimation, the variance and the coefficient of variation are derived for the presented SISM. Comparing with the Monte Carlo method, the stratified sampling method and the importance sampling method, the presented SISM has wider applicability and higher calculation efficiency, which is demonstrated by numerical examples. Finally, the reliability sensitivity analysis of flap structure is illustrated that the SISM can be applied to engineering structure.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.60205001,60405004 and 60021302).
文摘Rather than the difficulties of highly non-linear and non-Gaussian observation process and the state distribution in single target tracking, the presence of a large, varying number of targets and their interactions place more challenge on visual tracking. To overcome these difficulties, we formulate multiple targets tracking problem in a dynamic Markov network which consists of three coupled Markov random fields that model the following: a field for joint state of multi-target, one binary process for existence of individual target, and another binary process for occlusion of dual adjacent targets. By introducing two robust functions, we eliminate the two binary processes, and then apply a novel version of belief propagation called sequential stratified sampling belief propagation algorithm to obtain the maximum a posteriori (MAP) estimation in the dynamic Markov network, By using stratified sampler, we incorporate bottom-up information provided by a learned detector (e.g. SVM classifier) and belief information for the messages updating. Other low-level visual cues (e.g. color and shape) can be easily incorporated in our multi-target tracking model to obtain better tracking results. Experimental results suggest that our method is comparable to the state-of-the-art multiple targets tracking methods in several test cases.
基金This work was funded by the National Key R&D Program of China(2018YFD0900904)the National Natural Science Foundation of China(31772852)the Fundamental Research Funds for the Central Universities(No.201562030,No.201612004).
文摘Stratified random survey is commonly used to estimate abundance indices of fish populations in multispecies survey,providing reliable data for stock assessment and fisheries management.In some cases,however,the sample size is relatively small because of the limitation of survey cost or other factors.The allocation methods of sampling efforts among strata in stratified random surveys with small sample size may need adjustment compared with traditional approaches.In this study,two sampling stations were allocated to each stratum first and then the remaining sampling units were allocated among strata using five traditional allocation methods.In order to distinguish them from traditional methods,we called them adjusted methods in this study.A simulation study was conducted to compare the performances of different allocation strategies of sampling efforts in a stratified random survey for estimating abundance indices of multiple target species.Relative estimation error(REE)and relative bias(RB)were used to measure the precision and accuracy of estimates of abundance indices under different allocation schemes of sampling efforts in the multispecies survey.The performances of different allocation schemes in estimating abundance indices varied greatly for different species over different seasons.The adjusted Neyman allocation scheme could significantly reduce the REE and RB of estimates of abundance index for single species survey.For multiple species surveys,the adjusted average-Neyman allocation method,the adjusted Yate allocation method,the adjusted proportional allocation method and current allocation method had relatively high accuracy and precision of estimates of abundance indices for four species in terms of the total_(REE) and total_(RB).Though the adjusted average-Neyman allocation scheme did not always have the best performance,it was the optimal one considering the accuracy and precision of estimates of abundance indices for all species simultaneously.The allocation of sampling efforts among strata in stratified random surveys targeting for estimating abundance indices of multiple species should comprehensively consider the variance of abundance of different species in stratum and the seasonal changes.