期刊文献+
共找到196篇文章
< 1 2 10 >
每页显示 20 50 100
Influence of topography on the fine structures of stratospheric gravity waves:An analysis using COSMIC-2 temperature data 被引量:1
1
作者 JiaRui Wei Xiao Liu +2 位作者 JiYao Xu QinZeng Li Hong Gao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期497-513,共17页
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O... We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S. 展开更多
关键词 TOPOGRAPHY fine structures stratospheric gravity waves Constellation Observing System for Meteorology Ionosphere and Climate-2(COSMIC-2) dissipation layers
下载PDF
Analysis of gravity wave activity during stratospheric sudden warmings in the northern hemisphere
2
作者 XuanYun Zeng Guang Zhong 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期415-422,共8页
Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The ... Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The variation characteristics of GWs during SSWs have always been an important issue.Using temperature data from January to March in 2014−2016,provided by the Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)mission,we have analyzed global GW activity at 15−40 km in the Northern Hemisphere during SSW events.During the SSWs that we studied,the stratospheric temperature rose in one or two longitudinal regions in the Northern Hemisphere;the areas affected extended to the east of 90°W.During these SSWs,the potential energy density(E_(p)of GWs expanded and covered a larger range of longitude and altitude,exhibiting an eastward and downward extension.The E_(p)usually increased,while partially filtered by the eastward zonal winds.When zonal winds weakened or turned westward,E_(p)began to strengthen.After SSWs,the E_(p)usually decreased.These observations can serve as a reference for analyzing the interaction mechanism between SSWs and GWs in future work. 展开更多
关键词 stratospheric sudden warming gravity wave wind filter
下载PDF
Himalayas as a global hot spot of springtime stratospheric intrusions:Insight from isotopic signatures in sulfate aerosols
3
作者 Kun Wang ShiChang Kang +9 位作者 Mang Lin PengFei Chen ChaoLiu Li XiuFeng Yin Shohei Hattori Teresa L.Jackson JunHua Yang YiXi Liu Naohiro Yoshida Mark HThiemens 《Research in Cold and Arid Regions》 CSCD 2024年第1期5-13,共9页
Downward transport of stratospheric air into the troposphere(identified as stratospheric intrusions)could potentially modify the radiation budget and chemical of the Earth's surface atmosphere.As the highest and l... Downward transport of stratospheric air into the troposphere(identified as stratospheric intrusions)could potentially modify the radiation budget and chemical of the Earth's surface atmosphere.As the highest and largest plateau on earth,the Tibetan Plateau including the Himalayas couples to global climate,and has attracted widespread attention due to rapid warming and cryospheric shrinking.Previous studies recognized strong stratospheric intrusions in the Himalayas but are poorly understood due to limited direct evidences and the complexity of the meteorological dynamics of the third pole.Cosmogenic^(35)S is a radioactive isotope predominately produced in the lower stratosphere and has been demonstrated as a sensitive chemical tracer to detect stratospherically sourced air mass in the planetary boundary layer.Here,we report 6-month(April–September 2018)observation of^(35)S in atmospheric sulfate aerosols(^(35)SO_(4)^(2-))collected from a remote site in the Himalayas to reveal the stratospheric intrusion phenomenon as well as its potential impacts in this region.Throughout the sampling campaign,the^(35)SO_(4)^(2-)concentrations show an average of 1,070±980 atoms/m^(3).In springtime,the average is 1,620±730 atoms/m^(3),significantly higher than the global existing data measured so far.The significant enrichments of^(35)SO_(4)^(2-)measured in this study verified the hypothesis that the Himalayas is a global hot spot of stratospheric intrusions,especially during the springtime as a consequence of its unique geology and atmospheric couplings.In combined with the ancillary evidences,e.g.,oxygen-17 anomaly in sulfate and modeling results,we found that the stratospheric intrusions have a profound impact on the surface ozone concentrations over the study region,and potentially have the ability to constrain how the mechanisms of sulfate oxidation are affected by a change in plateau atmospheric properties and conditions.This study provides new observational constraints on stratospheric intrusions in the Himalayas,which would further provide additional information for a deeper understanding on the environment and climatic changes over the Tibetan Plateau. 展开更多
关键词 HIMALAYAS stratospheric intrusions Cosmogenic^(35)SO_(4)^(2-) Ozone Atmospheric oxidation
下载PDF
Differential pressure difference based altitude control of a stratospheric satellite
4
作者 陈丽 WANG Xiaoliang 《High Technology Letters》 EI CAS 2024年第1期1-12,共12页
An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to bal... An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to balance the platform gravity.The two-way blower inflates and deflates the ballonet to regulate the buoyancy.Altitude adjustment is achieved by tracking the differential pressure difference(DPD),and a threshold switching strategy is used to achieve blower flow control.The vertical acceleration regulation ability is decided not only by the blower flow rate,but also by the designed margin of pressure difference(MPD).Pressure difference is a slow-varying variable compared with altitude,and it is adopted as the control variable.The response speed of the actuator to disturbance can be delayed,and the overshoot caused by the large inertia of the platform is inhibited.This method can maintain a high tracking accuracy and reduce the complexity of model calculation,thus improving the robustness of controller design. 展开更多
关键词 stratospheric satellite(StratoSat) differential pressure difference(DPD) altitude adjustment threshold switching strategy margin of pressure difference(MPD)
下载PDF
2-D Modeling and Calculations of Stratospheric Ozone and Influences of Convection, Diffusion, and Time
5
作者 Ibraheem Alelmi Laurie Wei Sen Nieh 《Atmospheric and Climate Sciences》 2024年第2期250-276,共27页
An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical react... An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical reaction equations was developed, validated, and used for studying the ozone concentrations, distribution and peak of the layer, ozone depletion and total ozone abundance in the stratosphere. The calculated ozone concentrations and profile at both the Equator and a 60˚N location were found to follow closely with the measured data. The calculated average ozone concentration was within 1% of the measured average, and the deviation of ozone profiles was within 14%. The monthly evolution of stratospheric ozone concentrations and distribution above the Equator was studied with results discussed in details. The influences of slow air movement in both altitudinal and radial directions on ozone concentrations and profile in the stratosphere were explored and discussed. Parametric studies of the influences of gas diffusivities of ozone D<sub>O3</sub> and active atomic oxygen D<sub>O</sub> on ozone concentrations and distributions were also studied and delineated. Having both influences through physical diffusion and chemical reactions, the diffusivity (and diffusion) of atomic oxygen D<sub>O</sub> was found to be more sensitive and important than that of ozone D<sub>O3</sub> on ozone concentrations and distribution. The 2-D ozone model present in this paper for stratospheric ozone and its layer and depletion is shown to be robust, convenient, efficient, and executable for analyzing the complex ozone phenomena in the stratosphere. . 展开更多
关键词 stratospheric Ozone 2-D Model Ozone Layer Ozone Depletion CONVECTION DIFFUSION
下载PDF
Representation of the Stratospheric Circulation in CRA-40 Reanalysis:The Arctic Polar Vortex and the Quasi-Biennial Oscillation
6
作者 Zixu WANG Shirui YAN +3 位作者 Jinggao HU Jiechun DENG Rongcai REN Jian RAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期894-914,共21页
The representation of the Arctic stratospheric circulation and the quasi-biennial oscillation(QBO)during the period 1981–2019 in a 40-yr Chinese global reanalysis dataset(CRA-40)is evaluated by comparing two widely u... The representation of the Arctic stratospheric circulation and the quasi-biennial oscillation(QBO)during the period 1981–2019 in a 40-yr Chinese global reanalysis dataset(CRA-40)is evaluated by comparing two widely used reanalysis datasets,ERA-5 and MERRA-2.CRA-40 demonstrates a comparable performance with ERA-5 and MERRA-2 in characterizing the winter and spring circulation in the lower and middle Arctic stratosphere.Specifically,differences in the climatological polar-mean temperature and polar night jet among the three reanalyses are within±0.5 K and±0.5 m s^(–1),respectively.The onset dates of the stratospheric sudden warming and stratospheric final warming events at 10 hPa in CRA-40,together with the dynamics and circulation anomalies during the onset process of warming events,are nearly identical to the other two reanalyses with slight differences.By contrast,the CRA-40 dataset demonstrates a deteriorated performance in describing the QBO below 10 hPa compared to the other two reanalysis products,manifested by the larger easterly biases of the QBO index,the remarkably weaker amplitude of the QBO,and the weaker wavelet power of the QBO period.Such pronounced biases are mainly concentrated in the period 1981–98 and largely reduced by at least 39%in 1999–2019.Thus,particular caution is needed in studying the QBO based on CRA-40.All three reanalyses exhibit greater disagreement in the upper stratosphere compared to the lower and middle stratosphere for both the polar region and the tropics. 展开更多
关键词 CRA-40 ERA-5 MERRA-2 Arctic stratosphere the QBO
下载PDF
Role of Stratospheric Processes in Climate Change: Advances and Challenges 被引量:2
7
作者 Wenshou TIAN Jinlong HUANG +3 位作者 Jiankai ZHANG Fei XIE Wuke WANG Yifeng PENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第8期1379-1400,共22页
In this review,instead of summarizing all the advances and progress achieved in stratospheric research,the main advances and new developments in stratosphere-troposphere coupling and stratospheric chemistry-climate in... In this review,instead of summarizing all the advances and progress achieved in stratospheric research,the main advances and new developments in stratosphere-troposphere coupling and stratospheric chemistry-climate interactions are summarized,and some outstanding issues and grand challenges are discussed.A consensus has been reached that the stratospheric state is an important source of improving the predictability of the troposphere on sub-seasonal to seasonal(S2S)time scales and beyond.However,applying stratospheric signals in operational S2S forecast models remains a challenge because of model deficiencies and the complexities of the underlying mechanisms of stratosphere-troposphere coupling.Stratospheric chemistry,which controls the magnitude and distribution of many important climate-forcing agents,plays a critical role in global climate change.Convincing evidence has been found that stratospheric ozone depletion and recovery have caused significant tropospheric climate changes,and more recent studies have revealed that stratospheric ozone variations can even exert an impact on SSTs and sea ice.The climatic impacts of stratospheric aerosols and water vapor are also important.Although their quantitative contributions to radiative forcing have been reasonably well quantified,there still exist large uncertainties in their long-term impacts on climate.The advances and new levels of understanding presented in this review suggest that whole-atmosphere interactions need to be considered in future for a better and more thorough understanding of stratosphere-troposphere coupling and its role in climate change. 展开更多
关键词 STRATOSPHERE the stratosphere-troposphere coupling stratospheric chemistry-climate interactions stratospheric ozone
下载PDF
The Influence of Meridional Variation in North Pacific Sea Surface Temperature Anomalies on the Arctic Stratospheric Polar Vortex 被引量:1
8
作者 Tao WANG Qiang FU +5 位作者 Wenshou TIAN Hongwen LIU Yifeng PENG Fei XIE Hongying TIAN Jiali LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第12期2262-2278,共17页
This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific S... This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific SST.The principal component 1(PC1)of the first leading mode is obtained by empirical orthogonal function decomposition.Reanalysis data,numerical experiments,and CMIP5 model outputs all suggest that the PC1 events(positive-minus-negative PC1 events),located relatively northward(i.e.,North PC1 events),more easily weaken the Arctic SPV compared to the PC1 events located relatively southward(i.e.,South PC1 events).The analysis indicates that the North PC1-related Aleutian low anomaly is located over the northern North Pacific and thus enhances the climatological trough,which strengthens the planetary-scale wave 1 at mid-to-high latitudes and thereby weakens the SPV.The weakened stratospheric circulation further extends into the troposphere and favors negative surface temperature anomalies over Eurasia.By contrast,the South PC1-related Aleutian low anomaly is located relatively southward,and its constructive interference with the climatological trough is less efficient at high latitudes.Thus,the South PC1 events could not induce an evident enhancement of the planetary-scale waves at high latitudes and thereby a weakening of the SPV on average.The Eurasian cooling associated with South PC1 events(positive-minus-negative PC1 events)is also not prominent.The results of this study suggest that the meridional positions of the PC1 events may be useful for predicting the Arctic SPV and Eurasian surface temperature variations. 展开更多
关键词 Arctic stratospheric polar vortex stratosphere-troposphere interactions North Pacific sea surface temperature Aleutian low
下载PDF
Calculations of Stratospheric Ozone and Effects of Diffusivity 被引量:1
9
作者 Laurie Wei Ibraheem Alelmi Sen Nieh 《Atmospheric and Climate Sciences》 2023年第3期385-400,共16页
This paper presents a system approach of mass balance of ozone and other species under diffusion-convection-reaction processes to study the ozone layer along the altitude in the stratosphere. The ozone abundance and g... This paper presents a system approach of mass balance of ozone and other species under diffusion-convection-reaction processes to study the ozone layer along the altitude in the stratosphere. The ozone abundance and general distribution above the tropical area were calculated and compared to the published measured data. The peak ozone layer was found to be 21 mPa at 22 km or 9.7 ppm at 30 km, and the involved competing processes depicting the ozone layer were explained in details. In the entire stratosphere from 10 km to 50 km, the calculated ozone distribution displayed a similar profile and trend to the observational data, with the calculation in ppm slightly above the measurement by 12%. The standard deviation of the differences between calculated and measured data was close to 0.25. A sensitivity study of gas diffusivities of molecular ozone D<sub>3</sub> and atomic oxygen D<sub>1</sub> on changing the ozone abundance and profile in the stratosphere showed that in the upper two-third of the stratosphere, D<sub>1</sub> evidently exhibited a pronounced impact on ozone, as much as 24-fold larger than D<sub>3</sub>. The mechanism leading to this finding was also elaborated. The approach and calculations in this paper are shown to be useful for providing an initial insight into the structure and behavior of the complex ozone layer. 展开更多
关键词 OZONE stratospheric Distribution MODELING DIFFUSIVITY
下载PDF
Modelling,Validation,and Calculations of Stratospheric Ozone Dynamics and Latitudinal Changes 被引量:1
10
作者 Ibraheem Alelmi Laurie Wei Sen Nieh 《Journal of Environmental Science and Engineering(B)》 2023年第6期265-279,共15页
This paper presents an engineering system approach of 2-D cylindrical model of mass balance calculations with convection,diffusion,and all potential photolysis,ozone generating and depleting chemical reactions conside... This paper presents an engineering system approach of 2-D cylindrical model of mass balance calculations with convection,diffusion,and all potential photolysis,ozone generating and depleting chemical reactions considered.This model was developed,validated,and tested under different conditions for the stratospheric ozone.The calculated ozone concentrations and profile in the stratosphere at both the Equator and mid-latitudinal location of 40°S were found to exhibit a similar and close profile and peak value of the published measured data.The discrepancy between the calculations and measurements for the average ozone concentration was shown to be less than 1%and the variation of distributions to be less than 19%.The latitudinal changes of ozone concentrations,distribution,and peak of the layer were found to shift from 9.41 ppm at mid-altitude of z=30 km at the Equator,to 7.81 ppm at z=34.5 km at 40°S,to 5.78 ppm at higher altitude z=39 km at the South Pole.The total ozone abundances at strategic latitudes at 0°S,20°S,40°S,60°S,and 90°S,were found to remain stable and not much changed,from 305 DU to 335 DU,except a smaller value of 288 DU at the South Pole.The possible explanations of ozone profile change and peak shifting as affected by solar/UV radiation,latitudinal locations,and ozone-depleting reactions were discussed and elaborated.The 2-D ozone Model presented in this paper is a robust,efficient,executable,and validated model for studying the complex ozone phenomena in the stratosphere. 展开更多
关键词 2-D ozone model stratospheric ozone validation ozone depletion latitudinal changes
下载PDF
Sub seasonal variations of weak stratospheric polar vortex in December and its impact on Eurasian air temperature 被引量:1
11
作者 PENG Cheng FAN Ke DAI Haixia 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第5期369-375,共7页
Weak stratospheric polar vortex(WPV)events during winter months were investigated.WPV events were identified as being weakest in December,accompanied by the most dramatic increase in geopotential height over the polar... Weak stratospheric polar vortex(WPV)events during winter months were investigated.WPV events were identified as being weakest in December,accompanied by the most dramatic increase in geopotential height over the polar region.After the onset of a December WPV event,the dynamic processes influencing Eurasian temperature can be split into two separate periods.Period I(lag of 0-25 days)is referred to as the stratosphere-troposphere interactions period,as it is mainly characterized by stratospheric signals propagating downwards.In Period I,a stratospheric negative Northern Annular Mode(NAM)pattern associated with the WPV propagates downwards,inducing a negative NAM in the troposphere.The anomalous low centers over the Mediterranean and North Pacific bring cold advection to northern Eurasia,resulting in a north-cold-south-warm dipole pattern over Eurasia.The zero line between negative and positive temperature anomalies moves southwards during days 5-20.Stratospheric cold anomalies at midlatitudes propagate downwards to high latitudes in the troposphere and contribute to the dipole structure.During PeriodⅡ(lag of 25-40 days),as downward signals from the stratosphere have vanished,the dynamic processes mainly take place within the troposphere.Specifically,a wave train is initiated from the North Atlantic region to northern Europe.The propagation of wave activity flux intensifies a cyclonic anomaly over northern Europe,which brings cold advection to Scandinavia and warm advection to central Asia.Therefore,a northwest-cold-southeast-warm dipole structure occupies Eurasia and migrates southeastwards during this period. 展开更多
关键词 stratospheric polar vortex weak stratospheric polar vortex events in December subseasonal variability stratosphere-troposphere interaction winter Eurasian air temperature(0-40 days)
下载PDF
Interannual Variability of the Winter Stratospheric Polar Vortex in the Northern Hemisphere and Their Relations to QBO and ENSO 被引量:9
12
作者 陈文 魏科 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第5期855-863,共9页
We investigated the interannual variations of the winter stratospheric polar vortex in this paper. EOF analysis shows that two modes of variability dominate the stratospheric polar vortex on interannual timescales The... We investigated the interannual variations of the winter stratospheric polar vortex in this paper. EOF analysis shows that two modes of variability dominate the stratospheric polar vortex on interannual timescales The leading mode (EOF1) reflects the intensity variation of the polar vortex and is characterized by a geopotential height seesaw between the polar region and the mid-latitudes. The second one (EOF2) exhibits variation in the zonal asymmetric part of the polar vortex, which mainly describes the stationary planetary wave activity. As the strongest interannual variation signal in the atmosphere, the QBO has been shown to influence mainly the strength of the polar vortex. On the other hand, the ENSO cycle, as the strongest interannual variation signal in the ocean, has been shown to be mainly associated with the variation of stationary planetary wave activity in the stratosphere. Possible influences of the stratospheric polar vortex on the tropospheric circulation are also discussed in this paper. 展开更多
关键词 stratospheric polar vortex EOF stationary wave QBO ENSO
下载PDF
The Possible Influence of Stratospheric Sudden Warming on East Asian Weather 被引量:11
13
作者 邓淑梅 陈月娟 +2 位作者 罗涛 毕云 周后福 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第5期841-846,共6页
By analyzing the linkage of the Northern Annular Mode (NAM) anomaly to the East Asian jet and the East Asian trough during Stratospheric Sudden Warming (SSW), the influence of SSW on East Asian weather is studied.... By analyzing the linkage of the Northern Annular Mode (NAM) anomaly to the East Asian jet and the East Asian trough during Stratospheric Sudden Warming (SSW), the influence of SSW on East Asian weather is studied. The results show that the East Asian jet is strengthened and the East Asian trough is deepened during SSW. With the downward propagation of SSW, the strengthened East Asian jet and the East Asian trough would move southward, expand westward and gradually influence the area of north and northeastern China. This implies that the winter monsoon tends to be enhanced over East Asia during SSW. 展开更多
关键词 stratospheric sudden warming northern annular mode the East Asian jet the East Asian trough
下载PDF
Effects of Meridional Sea Surface Temperature Changes on Stratospheric Temperature and Circulation 被引量:8
14
作者 HU Dingzhu TIAN Wenshou +2 位作者 XIE Fei SHU Jianchuan Sandip DHOMSE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第4期888-900,共13页
Using a state-of-the-art chemistry-climate model,we analyzed the atmospheric responses to increases in sea surface temperature (SST).The results showed that increases in SST and the SST meridional gradient could int... Using a state-of-the-art chemistry-climate model,we analyzed the atmospheric responses to increases in sea surface temperature (SST).The results showed that increases in SST and the SST meridional gradient could intensify the subtropical westerly jets and significantly weaken the northern polar vortex.In the model runs,global uniform SST increases produced a more significant impact on the southern stratosphere than the northern stratosphere,while SST gradient increases produced a more significant impact on the northern stratosphere.The asymmetric responses of the northern and southern polar stratosphere to SST meridional gradient changes were found to be mainly due to different wave properties and transmissions in the northern and southern atmosphere.Although SST increases may give rise to stronger waves,the results showed that the effect of SST increases on the vertical propagation of tropospheric waves into the stratosphere will vary with height and latitude and be sensitive to SST meridional gradient changes.Both uniform and non-uniform SST increases accelerated the large-scale Brewer-Dobson circulation (BDC),but the gradient increases of SST between 60°S and 60°N resulted in younger mean age-of-air in the stratosphere and a larger increase in tropical upwelling,with a much higher tropopause than from a global uniform 1.0 K SST increase. 展开更多
关键词 numerical simulation stratospheric temperature sea surface temperature Brewer-Dobson circulation
下载PDF
Influence of Major Stratospheric Sudden Warming on the Unprecedented Cold Wave in East Asia in January 2021 被引量:7
15
作者 Yingxian ZHANG Dong SI +3 位作者 Yihui DING Dabang JIANG Qingquan LI Guofu WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第4期576-590,共15页
An unprecedented cold wave intruded into East Asia in early January 2021 and led to record-breaking or historical extreme low temperatures over vast regions.This study shows that a major stratospheric sudden warming(S... An unprecedented cold wave intruded into East Asia in early January 2021 and led to record-breaking or historical extreme low temperatures over vast regions.This study shows that a major stratospheric sudden warming(SSW)event at the beginning of January 2021 exerted an important influence on this cold wave.The major SSW event occurred on 2 January 2021 and subsequently led to the displacement of the stratospheric polar vortex to the East Asian side.Moreover,the SSW event induced the stratospheric warming signal to propagate downward to the mid-to-lower troposphere,which not only enhanced the blocking in the Urals-Siberia region and the negative phase of the Arctic Oscillation,but also shifted the tropospheric polar vortex off the pole.The displaced tropospheric polar vortex,Ural blocking,and another downstream blocking ridge over western North America formed a distinct inverted omega-shaped circulation pattern(IOCP)in the East Asia-North Pacific sector.This IOCP was the most direct and impactful atmospheric pattern causing the cold wave in East Asia.The IOCP triggered a meridional cell with an upward branch in East Asia and a downward branch in Siberia.The meridional cell intensified the Siberian high and low-level northerly winds,which also favored the invasion of the cold wave into East Asia.Hence,the SSW event and tropospheric circulations such as the IOCP,negative phase of Arctic Oscillation,Ural blocking,enhanced Siberian high,and eastward propagation of Rossby wave eventually induced the outbreak of an unprecedented cold wave in East Asia in early January 2021. 展开更多
关键词 cold wave stratospheric sudden warming polar vortex Ural blocking Siberian high
下载PDF
On the Differences and Climate Impacts of Early and Late Stratospheric Polar Vortex Breakup 被引量:9
16
作者 李琳 李崇银 +1 位作者 潘静 谭言科 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第5期1119-1128,共10页
The stratospheric polar vortex breakup (SPVB) is an important phenomenon closely related to the seasonal transition of stratospheric circulation. In this paper, 62-year NCEP/NCAR reanalysis data were employed to inv... The stratospheric polar vortex breakup (SPVB) is an important phenomenon closely related to the seasonal transition of stratospheric circulation. In this paper, 62-year NCEP/NCAR reanalysis data were employed to investigate the distinction between early and late SPVB. The results showed that the anomalous circulation signals extending from the stratosphere to the troposphere were reversed before and after early SPVB, while the stratospheric signals were consistent before and after the onset of late SPVB. Arctic Oscillation (AO) evolution during the life cycle of SPVB also demonstrated that the negative AO signal can propagate downward after early SPVB. Such downward AO signals could be identified in both geopotential height and temperature anomalies. After the AO signal reached the lower troposphere, it influenced the Aleutian Low and Siberian High in the troposphere, leading to a weak winter monsoon and large-scale warming at mid latitudes in Asia. Compared to early SPVB, downward propagation was not evident in late SPVB. The high-latitude tropospheric circulation in the Northern Hemisphere was affected by early SPVB, causing it to enter a summer circulation pattern earlier than in late SPVB years. 展开更多
关键词 stratospheric polar vortex breakup (SPVB) stratosphere-troposphere interaction Arctic Os- cillation (AO) season transition
下载PDF
Structural Performance Evaluation Procedure for Large Flexible Airship of HALE Stratospheric Platform Conception 被引量:8
17
作者 陈务军 肖微微 +3 位作者 Bernd Krplin Andreas KunzeInst.of Static and Dynamic for Aerospace Structures Univ.of Stuttgart Germany 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第2期293-300,共8页
Basic loads applied on the airship envelope were analyzed.The resultant forces,the static bending moment and the dynamic bending moment were formulated.Based on classic linear elastic membrane theory,the procedures to... Basic loads applied on the airship envelope were analyzed.The resultant forces,the static bending moment and the dynamic bending moment were formulated.Based on classic linear elastic membrane theory,the procedures to calculate the minimum pressure were proposed for sufficient rigidity evaluation.The limit load capacity was further investigated,and the related formula were developed.Finally,the stress and internal forces analysis was carried out for cylindrical and non-cylindrical approximations of envelope hull of airship.The present research is very valuable to the overall preliminary design of airship and further research. 展开更多
关键词 AIRSHIP stratospheric platform minimum pressure structural performance
下载PDF
Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change 被引量:16
18
作者 田文寿 Martyn P.CHIPPERFIELD 吕达仁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第3期423-437,共15页
Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate th... Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H20. The chemical effects of this H20 increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%-6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000 ~2050 than between 2050~2100, driven mainly by the larger relative change in chlorine in the earlier period. 展开更多
关键词 stratospheric water vapor temperature change ozone depletion chemistry-climate model
下载PDF
Stratospheric Ozone-induced Cloud Radiative Effects on Antarctic Sea Ice 被引量:4
19
作者 Yan XIA Yongyun HU +3 位作者 Jiping LIU Yi HUANG Fei XIE Jintai LIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第5期505-514,共10页
Recent studies demonstrate that the Antarctic Ozone Hole has important influences on Antarctic sea ice.While most of these works have focused on effects associated with atmospheric and oceanic dynamic processes caused... Recent studies demonstrate that the Antarctic Ozone Hole has important influences on Antarctic sea ice.While most of these works have focused on effects associated with atmospheric and oceanic dynamic processes caused by stratospheric ozone changes,here we show that stratospheric ozone-induced cloud radiative effects also play important roles in causing changes in Antarctic sea ice.Our simulations demonstrate that the recovery of the Antarctic Ozone Hole causes decreases in clouds over Southern Hemisphere(SH)high latitudes and increases in clouds over the SH extratropics.The decrease in clouds leads to a reduction in downward infrared radiation,especially in austral autumn.This results in cooling of the Southern Ocean surface and increasing Antarctic sea ice.Surface cooling also involves ice-albedo feedback.Increasing sea ice reflects solar radiation and causes further cooling and more increases in Antarctic sea ice. 展开更多
关键词 stratospheric OZONE recovery ANTARCTIC sea ICE cloud RADIATIVE effects ice-albedo feedback climate change
下载PDF
Parallel Comparison of the Northern Winter Stratospheric Circulation in Reanalysis and in CMIP5 Models 被引量:7
20
作者 RAO Jian REN Rongcai YANG Yang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第7期952-966,共15页
A parallel comparison is made of the circulation climatology and the leading oscillation mode of the northern winter stratosphere among six reanalysis products and 24 CMIP5 (Coupled Model Intercomparison Project Phas... A parallel comparison is made of the circulation climatology and the leading oscillation mode of the northern winter stratosphere among six reanalysis products and 24 CMIP5 (Coupled Model Intercomparison Project Phase 5) models. The results reveal that the NCEP/NCAR, NECP/DOE, ERA40, ERA-Interim and JRA25 reanalyses are quite consistent in describ- ing the climatology and annual cycle of the stratospheric circulation. The 20CR reanalysis, however, exhibits a remarkable "cold pole" bias accompanied by a much stronger stratospheric polar jet, similar as in some CMIP5 models. Compared to the 1-2 month seasonal drift in most coupled general circulation models (GCMs), the seasonal cycle of the stratospheric zonal wind in most earth system models (ESMs) agrees very well with reanalysis. Similar to the climatology, the amplitude of Polar Vortex Oscillation (PVO) events also varies among CMIP5 models. The P^O amplitude in most GCMs is relatively weaker than in reanalysis, while that in most of the ESMs is more realistic. In relation to the "cold pole" bias and the weaker oscillation in some CMIP5 GCMs, the frequency of PVO events is significantly underestimated by CMIP5 GCMs; while in most ESMs, it is comparable to that in reanalysis. The PVO events in reanalysis (except in 20CR) mainly occur from mid-winter to early spring (January-March); but in some of the CMIP5 models, a l-2 month delay exists, especially in most of the CMIP5 GCMs. The long-term trend of the PVO time series does not correspond to long-term changes in the frequency of PVO events in most of the CMIP5 models. 展开更多
关键词 CMIP5 northern winter stratospheric circulation Polar Vortex Oscillation
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部