期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change 被引量:16
1
作者 田文寿 Martyn P.CHIPPERFIELD 吕达仁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第3期423-437,共15页
Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate th... Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H20. The chemical effects of this H20 increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%-6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000 ~2050 than between 2050~2100, driven mainly by the larger relative change in chlorine in the earlier period. 展开更多
关键词 stratospheric water vapor temperature change ozone depletion chemistry-climate model
下载PDF
A CASE STUDY OF THE UNCORRELATED RELATIONSHIP BETWEEN TROPICAL TROPOPAUSE TEMPERATURE ANOMALIES AND STRATOSPHERIC WATER VAPOR ANOMALIES 被引量:1
2
作者 HAN Yuan-yuan TIAN Wen-shou +3 位作者 ZHANG Jian-kai HU Ding-zhu WANG Fei-yang SANG Wen-jun 《Journal of Tropical Meteorology》 SCIE 2018年第3期356-368,共13页
Using the measurements from the Halogen Occultation Experiment(HALOE)and the European Centre for Medium-Range Weather Forecasts(ECMWF)Interim reanalysis data for the period 1994-2005,we analyzed the relationship betwe... Using the measurements from the Halogen Occultation Experiment(HALOE)and the European Centre for Medium-Range Weather Forecasts(ECMWF)Interim reanalysis data for the period 1994-2005,we analyzed the relationship between tropical tropopause temperature anomalies and stratospheric water vapor anomalies.It is found that tropical tropopause temperature is correlated with stratospheric water vapor,i.e.,an anomalously high(low)tropical tropopause temperature corresponds to anomalously high(low)stratospheric water vapor during the period 1994-2005,except for 1996.The occurrence frequency and strength of deep convective activity during the‘mismatched'months is less and weaker than that during the‘matched'months in 1996.However,the instantaneous intensity of four short periods of deep convective activity,caused by strong surface cyclones and high sea surface temperatures,are greater during the‘mismatched'months than during the‘matched'months.Water vapor is transported from the lower troposphere to the lower stratosphere through a strong tropical upwelling,leading to an increase in stratospheric water vapor.On the other hand,deep convective activity can lift the tropopause and cool its temperature.In short,the key factor responsible for the poor correlation between tropical tropopause temperature and stratospheric water vapor in1996 is the instantaneous strong deep convective activity.In addition,an anomalously strong Brewer-Dobson circulation brings more water vapor into the stratosphere during the‘mismatched'months in 1996,and this exacerbates the poor correlation between tropical tropopause temperature and stratospheric water vapor. 展开更多
关键词 tropical tropopause temperature stratospheric water vapor deep convective activity Brewer-Dobson circulation ENSO
下载PDF
Seasonal evolution of the effects of the El Nino–Southern Oscillation on lower stratospheric water vapor:Delayed effects in late winter and early spring
3
作者 YuJing Liao QuanLiang Chen Xin Zhou 《Earth and Planetary Physics》 CSCD 2019年第6期489-500,共12页
Water vapor in the stratosphere makes a significant contribution to global climate change by altering the radiative energy budget of the Earth’s climate system.Although many previous studies have shown that the El N... Water vapor in the stratosphere makes a significant contribution to global climate change by altering the radiative energy budget of the Earth’s climate system.Although many previous studies have shown that the El Ni?o–Southern Oscillation(ENSO)has significant effects on the water vapor content of the stratosphere in terms of the annual or seasonal mean,a comprehensive analysis of the seasonal evolution of these effects is still required.Using reanalysis data and satellite observations,we carried out a composite analysis of the seasonal evolution of stratospheric water vapor during El Ni?o/La Ni?a peaks in winter and decays in spring.The ENSO has a distinct hysteresis effect on water vapor in the tropical lower stratosphere.The El Ni?o/La Ni?a events moisten/dry out the tropical lower stratosphere in both winter and spring,whereas this wetting/dehydration effect is more significant in spring.This pattern is due to a warmer temperature in the upper troposphere and lower stratosphere during the El Ni?o spring phase,which causes more water vapor to enter the stratosphere,and vice versa for La Ni?a.This delayed warming/cooling in the lower stratosphere during the El Ni?o/La Ni?a decay in spring leads to the seasonal evolution of ENSO effects on water vapor in the lower stratosphere. 展开更多
关键词 El Nino-Southern Oscillation stratospheric water vapor seasonal evolution
下载PDF
Lower Stratospheric Water Vapor Variations Diagnosed from Satellite Observations,Reanalysis Data,and a Chemistry-Climate Model 被引量:1
4
作者 Yan XIA Yi HUANG +1 位作者 Yongyun HU Jun YANG 《Journal of Meteorological Research》 SCIE CSCD 2021年第4期701-715,共15页
Stratospheric water vapor variations,which may play an important role in surface climate,have drawn extensive studies.Here,the variation in stratospheric water vapor is investigated by using data from observations of ... Stratospheric water vapor variations,which may play an important role in surface climate,have drawn extensive studies.Here,the variation in stratospheric water vapor is investigated by using data from observations of the Microwave Limb Sounder(MLS)on the Aura satellite,from the ECMWF Interim Reanalysis(ERAI),and simulations by the Whole Atmosphere Community Climate Model(WACCM).We find that the differences of annual mean stratospheric water vapor among these datasets may be partly caused by the differences in vertical transports.Using budget analysis,we find that the upward transport of water vapor at 100 h Pa is mainly located over the Pacific warm pool region and South America in the equatorial tropics in boreal winter and over the southeast of the South Asian high and south of North America in boreal summer.It is found that temperature averaged over regions with upward transport is a better indicator of interannual variability of tropical mean stratospheric water vapor than the tropical mean temperature.It seems that the distributions of the seasonal cycle amplitude of lower stratospheric water vapor in the tropics can also be impacted by the vertical transport.The radiative effects of the interannual changes in water vapor in the lowermost stratosphere are underestimated by approximately 29%in both ERAI and WACCM compared to MLS,although the interannual variations of water vapor in the lowermost stratosphere are dramatically overestimated in ERAI and WACCM.The results here indicate that the radiative effect of long-term changes in water vapor in the lowermost stratosphere may be underestimated in both ERAI and WACCM simulations. 展开更多
关键词 stratospheric water vapor horizontal and vertical transport chemistry-climate model radiative effects interannual variations
原文传递
Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere 被引量:1
5
作者 毕云 陈月娟 +2 位作者 周任君 易明建 邓淑梅 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期832-842,共11页
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactiv... To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change. 展开更多
关键词 stratospheric water vapor TEMPERATURE numerical simulation SOCRATES model
下载PDF
Regional applicability of seven meteorological drought indices in China 被引量:23
6
作者 YANG Qing LI MingXing +1 位作者 ZHENG ZiYan MA ZhuGuo 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第4期745-760,共16页
The definition of a drought index is the foundation of drought research.However,because of the complexity of drought,there is no a unified drought index appropriate for different drought types and objects at the same ... The definition of a drought index is the foundation of drought research.However,because of the complexity of drought,there is no a unified drought index appropriate for different drought types and objects at the same time.Therefore,it is crucial to determine the regional applicability of various drought indices.Using terrestrial water storage obtained from the Gravity Recovery And Climate Experiment,and the observed soil moisture and streamflow in China,we evaluated the regional applicability of seven meteorological drought indices:the Palmer Drought Severity Index(PDSI),modified PDSI(PDSI_CN) based on observations in China,self-calibrating PDSI(scPDSI),Surface Wetness Index(SWI),Standardized Precipitation Index(SPI),Standardized Precipitation Evapotranspiration Index(SPEI),and soil moisture simulations conducted using the community land model driven by observed atmospheric forcing(CLM3.5/ObsFC).The results showed that the scPDSI is most appropriate for China.However,it should be noted that the scPDSI reduces the value range slightly compared with the PDSI and PDSI_CN;thus,the classification of dry and wet conditions should be adjusted accordingly.Some problems might exist when using the PDSI and PDSI_CN in humid and arid areas because of the unsuitability of empiricalparameters.The SPI and SPEI are more appropriate for humid areas than arid and semiarid areas.This is because contributions of temperature variation to drought are neglected in the SPI,but overestimated in the SPEI,when potential evapotranspiration is estimated by the Thornthwaite method in these areas.Consequently,the SPI and SPEI tend to induce wetter and drier results,respectively.The CLM3.5/ObsFC is suitable for China before 2000,but not for arid and semiarid areas after 2000.Consistent with other drought indices,the SWI shows similar interannual and decadal change characteristics in detecting annual dry/wet variations.Although the long-term trends of drought areas in China detected by these seven drought indices during 1961-2013 are consistent,obvious differences exist among the values of drought areas,which might be attributable to the definitions of the drought indices in addition to climatic change. 展开更多
关键词 Surface sensible heating Tibetan-Iranian Plateau coupling system(TIPS) water vapor convergence Upper troposphere and lower stratosphere circulation Cooling center at tropopause
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部