The bonding mechanism between straw and concrete was analyzed through testing the compressive strength and flexural strength of hollow block, with different straw amount and different dosage and types of admixtures. T...The bonding mechanism between straw and concrete was analyzed through testing the compressive strength and flexural strength of hollow block, with different straw amount and different dosage and types of admixtures. The test results show that the mechanical properties of hollow blocks reduced after adding straws, and the more straws was added, the more hollow block density decreased. But adding A12(SO4)3 and CaC12 could improve the dense degree between rice straw and concrete. And when the proportion of straw mixing amount was 10%, the flexural strength of the early strength agent (2% A12(SO4)3, CaC12) added hollow block reached as maximal as 3.1 MPa, while the compressive strength was 9.1 MPa, consisting with the strength grade of common concrete hollow block MU7.5.展开更多
The efficient use of building materials is one of the responses to increasing urbanization and building energy consumption. Soil as a building material has been used for several thousand years due to its availability ...The efficient use of building materials is one of the responses to increasing urbanization and building energy consumption. Soil as a building material has been used for several thousand years due to its availability and its usual properties improving and stabilization techniques used. Thus, fonio straws and shea butter residues are incorporated into tow soil matrix. The objective of this study is to develop a construction eco-material by recycling agricultural and biopolymer by-products in compressed earth blocks (CEB) stabilization and analyze these by-products’ influence on CEB usual properties. To do this, compressed stabilized earth blocks (CSEB) composed of clay and varying proportion (3% to 10%) of fonio straw and shea butter residue incorporated were subjected to thermophysical, flexural, compressive, and durability tests. The results obtained show that the addition of fonio straw and shea butter residues as stabilizers improves compressed stabilized earth blocks thermophysical and mechanical performance and durability. Two different clay materials were studied. Indeed, for these CEB incorporating 3% fonio straw and 3% - 10% shea butter residue, the average compressive strength and three-point bending strength values after 28 days old are respectively 3.478 MPa and 1.062 MPa. In terms of CSEB thermal properties, the average thermal conductivity is 0.549 W/m·K with 3% fonio straw and from 0.667 to 0.798 W/m. K is with 3% - 10% shea butter residue and the average thermal diffusivity is 1.665.10-7 m2/s with 3% FF and 2.24.10-7 m2/s with 3.055.10-7 m2/s with 3% - 10% shea butter residue, while the average specific heat mass is between 1.508 and 1.584 kJ/kg·K. In addition, the shea butter residue incorporated at 3% - 10% improves CSEB water repellency, with capillary coefficient values between 31 and 68 [g/m2·s]1/2 and a contact angle between 43.63°C and 86.4°C. Analysis of the results shows that, it is possible to use these CSEB for single-storey housing construction.展开更多
为了确定黄瓜育苗块成型的最优工艺参数,以育苗基质和水稻秸秆的混合物为原料,育苗块的抗破坏强度和尺寸稳定性为成型质量检测指标,采用四元二次回归通用旋转组合试验设计结合响应面法,探讨了原料含水率、压力、秸秆长度和秸秆含量对育...为了确定黄瓜育苗块成型的最优工艺参数,以育苗基质和水稻秸秆的混合物为原料,育苗块的抗破坏强度和尺寸稳定性为成型质量检测指标,采用四元二次回归通用旋转组合试验设计结合响应面法,探讨了原料含水率、压力、秸秆长度和秸秆含量对育苗块成型的影响,建立了黄瓜育苗块成型特性参数与各因素之间的回归模型。综合分析表明,各因素对育苗块抗破坏强度的影响主次顺序为:压力>秸秆长度>含水率=秸秆含量,在交互作用中,含水率与秸秆含量、压力与秸秆长度、秸秆长度与秸秆含量对育苗块抗破坏强度的影响显著(P<0.05);各因素对育苗块尺寸稳定性的影响主次顺序为:秸秆含量>含水率>压力>秸秆长度,含水率与秸秆长度的交互作用对育苗块尺寸稳定性的影响较显著(P<0.05)。利用Design-Expert8.0.6软件得出理论最优工艺参数,并考虑试验的可操作性,对理论最优工艺参数进行调整及试验验证,得到最优工艺参数:含水率为21%,压力为4.5 k N,秸秆长度为10 mm,秸秆质量分数为12%,该组合条件下的育苗块抗破坏强度为23.03 N,尺寸稳定性为82.83%。分析表明,优化后育苗块的理化特性符合黄瓜育苗的农艺要求。该研究可为黄瓜育苗块成型机工艺参数优化提供理论和实践依据。展开更多
基金Funded by The National Key Technology R&D Program of China for the 12th Five-Year Plan(No.2012BAJ20B03)
文摘The bonding mechanism between straw and concrete was analyzed through testing the compressive strength and flexural strength of hollow block, with different straw amount and different dosage and types of admixtures. The test results show that the mechanical properties of hollow blocks reduced after adding straws, and the more straws was added, the more hollow block density decreased. But adding A12(SO4)3 and CaC12 could improve the dense degree between rice straw and concrete. And when the proportion of straw mixing amount was 10%, the flexural strength of the early strength agent (2% A12(SO4)3, CaC12) added hollow block reached as maximal as 3.1 MPa, while the compressive strength was 9.1 MPa, consisting with the strength grade of common concrete hollow block MU7.5.
文摘The efficient use of building materials is one of the responses to increasing urbanization and building energy consumption. Soil as a building material has been used for several thousand years due to its availability and its usual properties improving and stabilization techniques used. Thus, fonio straws and shea butter residues are incorporated into tow soil matrix. The objective of this study is to develop a construction eco-material by recycling agricultural and biopolymer by-products in compressed earth blocks (CEB) stabilization and analyze these by-products’ influence on CEB usual properties. To do this, compressed stabilized earth blocks (CSEB) composed of clay and varying proportion (3% to 10%) of fonio straw and shea butter residue incorporated were subjected to thermophysical, flexural, compressive, and durability tests. The results obtained show that the addition of fonio straw and shea butter residues as stabilizers improves compressed stabilized earth blocks thermophysical and mechanical performance and durability. Two different clay materials were studied. Indeed, for these CEB incorporating 3% fonio straw and 3% - 10% shea butter residue, the average compressive strength and three-point bending strength values after 28 days old are respectively 3.478 MPa and 1.062 MPa. In terms of CSEB thermal properties, the average thermal conductivity is 0.549 W/m·K with 3% fonio straw and from 0.667 to 0.798 W/m. K is with 3% - 10% shea butter residue and the average thermal diffusivity is 1.665.10-7 m2/s with 3% FF and 2.24.10-7 m2/s with 3.055.10-7 m2/s with 3% - 10% shea butter residue, while the average specific heat mass is between 1.508 and 1.584 kJ/kg·K. In addition, the shea butter residue incorporated at 3% - 10% improves CSEB water repellency, with capillary coefficient values between 31 and 68 [g/m2·s]1/2 and a contact angle between 43.63°C and 86.4°C. Analysis of the results shows that, it is possible to use these CSEB for single-storey housing construction.
文摘为了确定黄瓜育苗块成型的最优工艺参数,以育苗基质和水稻秸秆的混合物为原料,育苗块的抗破坏强度和尺寸稳定性为成型质量检测指标,采用四元二次回归通用旋转组合试验设计结合响应面法,探讨了原料含水率、压力、秸秆长度和秸秆含量对育苗块成型的影响,建立了黄瓜育苗块成型特性参数与各因素之间的回归模型。综合分析表明,各因素对育苗块抗破坏强度的影响主次顺序为:压力>秸秆长度>含水率=秸秆含量,在交互作用中,含水率与秸秆含量、压力与秸秆长度、秸秆长度与秸秆含量对育苗块抗破坏强度的影响显著(P<0.05);各因素对育苗块尺寸稳定性的影响主次顺序为:秸秆含量>含水率>压力>秸秆长度,含水率与秸秆长度的交互作用对育苗块尺寸稳定性的影响较显著(P<0.05)。利用Design-Expert8.0.6软件得出理论最优工艺参数,并考虑试验的可操作性,对理论最优工艺参数进行调整及试验验证,得到最优工艺参数:含水率为21%,压力为4.5 k N,秸秆长度为10 mm,秸秆质量分数为12%,该组合条件下的育苗块抗破坏强度为23.03 N,尺寸稳定性为82.83%。分析表明,优化后育苗块的理化特性符合黄瓜育苗的农艺要求。该研究可为黄瓜育苗块成型机工艺参数优化提供理论和实践依据。