In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedente...In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedented opportunities to tap into big data to mine valuable business intelligence. However, traditional business analytics methods may not be able to cope with the flood of big data. The main contribution of this paper is the illustration of the development of a novel big data stream analytics framework named BDSASA that leverages a probabilistic language model to analyze the consumer sentiments embedded in hundreds of millions of online consumer reviews. In particular, an inference model is embedded into the classical language modeling framework to enhance the prediction of consumer sentiments. The practical implication of our research work is that organizations can apply our big data stream analytics framework to analyze consumers’ product preferences, and hence develop more effective marketing and production strategies.展开更多
At this current time,data stream classification plays a key role in big data analytics due to its enormous growth.Most of the existing classification methods used ensemble learning,which is trustworthy but these metho...At this current time,data stream classification plays a key role in big data analytics due to its enormous growth.Most of the existing classification methods used ensemble learning,which is trustworthy but these methods are not effective to face the issues of learning from imbalanced big data,it also supposes that all data are pre-classified.Another weakness of current methods is that it takes a long evaluation time when the target data stream contains a high number of features.The main objective of this research is to develop a new method for incremental learning based on the proposed ant lion fuzzy-generative adversarial network model.The proposed model is implemented in spark architecture.For each data stream,the class output is computed at slave nodes by training a generative adversarial network with the back propagation error based on fuzzy bound computation.This method overcomes the limitations of existing methods as it can classify data streams that are slightly or completely unlabeled data and providing high scalability and efficiency.The results show that the proposed model outperforms stateof-the-art performance in terms of accuracy(0.861)precision(0.9328)and minimal MSE(0.0416).展开更多
By combining multiple weak learners with concept drift in the classification of big data stream learning, the ensemble learning can achieve better generalization performance than the single learning approach. In this ...By combining multiple weak learners with concept drift in the classification of big data stream learning, the ensemble learning can achieve better generalization performance than the single learning approach. In this paper,we present an efficient classifier using the online bagging ensemble method for big data stream learning. In this classifier, we introduce an efficient online resampling mechanism on the training instances, and use a robust coding method based on error-correcting output codes. This is done in order to reduce the effects of correlations between the classifiers and increase the diversity of the ensemble. A dynamic updating model based on classification performance is adopted to reduce the unnecessary updating operations and improve the efficiency of learning.We implement a parallel version of EoBag, which runs faster than the serial version, and results indicate that the classification performance is almost the same as the serial one. Finally, we compare the performance of classification and the usage of resources with other state-of-the-art algorithms using the artificial and the actual data sets, respectively. Results show that the proposed algorithm can obtain better accuracy and more feasible usage of resources for the classification of big data stream.展开更多
文摘In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedented opportunities to tap into big data to mine valuable business intelligence. However, traditional business analytics methods may not be able to cope with the flood of big data. The main contribution of this paper is the illustration of the development of a novel big data stream analytics framework named BDSASA that leverages a probabilistic language model to analyze the consumer sentiments embedded in hundreds of millions of online consumer reviews. In particular, an inference model is embedded into the classical language modeling framework to enhance the prediction of consumer sentiments. The practical implication of our research work is that organizations can apply our big data stream analytics framework to analyze consumers’ product preferences, and hence develop more effective marketing and production strategies.
基金Taif University Researchers Supporting Project Number(TURSP-2020/126),Taif University,Taif,Saudi Arabia.
文摘At this current time,data stream classification plays a key role in big data analytics due to its enormous growth.Most of the existing classification methods used ensemble learning,which is trustworthy but these methods are not effective to face the issues of learning from imbalanced big data,it also supposes that all data are pre-classified.Another weakness of current methods is that it takes a long evaluation time when the target data stream contains a high number of features.The main objective of this research is to develop a new method for incremental learning based on the proposed ant lion fuzzy-generative adversarial network model.The proposed model is implemented in spark architecture.For each data stream,the class output is computed at slave nodes by training a generative adversarial network with the back propagation error based on fuzzy bound computation.This method overcomes the limitations of existing methods as it can classify data streams that are slightly or completely unlabeled data and providing high scalability and efficiency.The results show that the proposed model outperforms stateof-the-art performance in terms of accuracy(0.861)precision(0.9328)and minimal MSE(0.0416).
基金supported in part by the National Natural Science Foundation of China(Nos.61702089,61876205,and 61501102)the Science and Technology Plan Project of Guangzhou(No.201804010433)the Bidding Project of Laboratory of Language Engineering and Computing(No.LEC2017ZBKT001)
文摘By combining multiple weak learners with concept drift in the classification of big data stream learning, the ensemble learning can achieve better generalization performance than the single learning approach. In this paper,we present an efficient classifier using the online bagging ensemble method for big data stream learning. In this classifier, we introduce an efficient online resampling mechanism on the training instances, and use a robust coding method based on error-correcting output codes. This is done in order to reduce the effects of correlations between the classifiers and increase the diversity of the ensemble. A dynamic updating model based on classification performance is adopted to reduce the unnecessary updating operations and improve the efficiency of learning.We implement a parallel version of EoBag, which runs faster than the serial version, and results indicate that the classification performance is almost the same as the serial one. Finally, we compare the performance of classification and the usage of resources with other state-of-the-art algorithms using the artificial and the actual data sets, respectively. Results show that the proposed algorithm can obtain better accuracy and more feasible usage of resources for the classification of big data stream.