A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a...A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a uniform magnetic field is applied perpendicular to the flow direction. The analysis takes into account the combined influence of heat and mass transfer, including the effects of Soret and Dufour. The flow’s non-Newtonian behavior is characterized using a Casson rheological model. The fluid flow equations are examined within a wave frame of reference that has a wave velocity. The analytic solution is examined using long wavelengths and a small Reynolds number assumption. The stream function, temperature, concentration and heat transfer coefficient expressions are derived. The bvp4c function from MATLAB has been used to numerically solve the transformed equations. The flow characteristics have been analyzed using graphs to demonstrate the impacts of different parameters.展开更多
Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed ...Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed for the real-time streams with strict delay constraint, especially in multi-channel context. This paper considers a real-time stream system, where real-time messages with different importance should be transmitted through several packet erasure channels, and be decoded by the receiver within a fixed delay. Based on window erasure channels and i.i.d.(identically and independently distributed) erasure channels, we derive the Multi-channel Real-time Stream Transmission(MRST) capacity models for Symmetric Real-time(SR) streams and Asymmetric Real-time(AR) streams respectively. Moreover, for window erasures, a Maximum Equilibrium Intra-session Code(MEIC) is presented for SR and AR streams, and is shown able to asymptotically achieve the theoretical MRST capacity. For i.i.d. erasures, we propose an Adaptive Maximum Equilibrium Intra-session Code(AMEIC), and then prove AMEIC can closely approach the MRST transmission capacity. Finally, the performances of the proposed codes are verified by simulations.展开更多
Two techniques for exploring relative horizontal accuracy of complex linear spatial features are described and sample source code (pseudo code) is presented for this purpose. The first technique, relative sinuosity, i...Two techniques for exploring relative horizontal accuracy of complex linear spatial features are described and sample source code (pseudo code) is presented for this purpose. The first technique, relative sinuosity, is presented as a measure of the complexity or detail of a polyline network in comparison to a reference network. We term the second technique longitudinal root mean squared error (LRMSE) and present it as a means for quantitatively assessing the horizontal variance between two polyline data sets representing digitized (reference) and derived stream and river networks. Both relative sinuosity and LRMSE are shown to be suitable measures of horizontal stream network accuracy for assessing quality and variation in linear features. Both techniques have been used in two recent investigations involving extraction of hydrographic features from LiDAR elevation data. One confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes yielded better stream network delineations, based on sinuosity and LRMSE, when using LiDAR-derived DEMs. The other demonstrated a new method of delineating stream channels directly from LiDAR point clouds, without the intermediate step of deriving a DEM, showing that the direct delineation from LiDAR point clouds yielded an excellent and much better match, as indicated by the LRMSE.展开更多
文摘A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a uniform magnetic field is applied perpendicular to the flow direction. The analysis takes into account the combined influence of heat and mass transfer, including the effects of Soret and Dufour. The flow’s non-Newtonian behavior is characterized using a Casson rheological model. The fluid flow equations are examined within a wave frame of reference that has a wave velocity. The analytic solution is examined using long wavelengths and a small Reynolds number assumption. The stream function, temperature, concentration and heat transfer coefficient expressions are derived. The bvp4c function from MATLAB has been used to numerically solve the transformed equations. The flow characteristics have been analyzed using graphs to demonstrate the impacts of different parameters.
基金supported by National Key Technology Research and Development Program of China under Grant No.2015BAH08F01the joint fund of the Ministry of Education of People's Republic of China and China Mobile Communications Corporation under Grant No.MCM20160304
文摘Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed for the real-time streams with strict delay constraint, especially in multi-channel context. This paper considers a real-time stream system, where real-time messages with different importance should be transmitted through several packet erasure channels, and be decoded by the receiver within a fixed delay. Based on window erasure channels and i.i.d.(identically and independently distributed) erasure channels, we derive the Multi-channel Real-time Stream Transmission(MRST) capacity models for Symmetric Real-time(SR) streams and Asymmetric Real-time(AR) streams respectively. Moreover, for window erasures, a Maximum Equilibrium Intra-session Code(MEIC) is presented for SR and AR streams, and is shown able to asymptotically achieve the theoretical MRST capacity. For i.i.d. erasures, we propose an Adaptive Maximum Equilibrium Intra-session Code(AMEIC), and then prove AMEIC can closely approach the MRST transmission capacity. Finally, the performances of the proposed codes are verified by simulations.
文摘Two techniques for exploring relative horizontal accuracy of complex linear spatial features are described and sample source code (pseudo code) is presented for this purpose. The first technique, relative sinuosity, is presented as a measure of the complexity or detail of a polyline network in comparison to a reference network. We term the second technique longitudinal root mean squared error (LRMSE) and present it as a means for quantitatively assessing the horizontal variance between two polyline data sets representing digitized (reference) and derived stream and river networks. Both relative sinuosity and LRMSE are shown to be suitable measures of horizontal stream network accuracy for assessing quality and variation in linear features. Both techniques have been used in two recent investigations involving extraction of hydrographic features from LiDAR elevation data. One confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes yielded better stream network delineations, based on sinuosity and LRMSE, when using LiDAR-derived DEMs. The other demonstrated a new method of delineating stream channels directly from LiDAR point clouds, without the intermediate step of deriving a DEM, showing that the direct delineation from LiDAR point clouds yielded an excellent and much better match, as indicated by the LRMSE.