Climate change and Land Use/Cover Change(LUCC) have been identified as two primary factors affecting watershed hydrological regime. This study analyzed the trends of streamflow, precipitation, air temperature and po...Climate change and Land Use/Cover Change(LUCC) have been identified as two primary factors affecting watershed hydrological regime. This study analyzed the trends of streamflow, precipitation, air temperature and potential evapotranspiration(PET) from 1962 to 2008 in the Jihe watershed in northwestern Loess Plateau of China using the Mann-Kendall test. The streamflow responses to climate change and LUCC were quantified independently by the elasticity method. The results show that the streamflow presented a dramatic decline with a turning point occurred in 1971, while the precipitation and PET did not change significantly. The results also show that the temperature rose markedly especially since 1990 s with an approximate increase of 1.74°C over the entire research period(1962–2008). Using land use transition matrix, we found that slope cropland was significantly converted to terrace between 1970 s and 1990 s and that forest cover increased relatively significantly because of the Grain for Green Project after 2000. The streamflow reduction was predominantly caused by LUCC and its contribution reached up to 90.2%, while the contribution of climate change to streamflow decline was only 9.8%. Although the analytical results between the elasticity method and linear regression model were not satisfactorily consistent, they both indicated that LUCC(human activity) was the major factor causing streamflow decline in the Jihe watershed from 1962 to 2008.展开更多
The Chinese Loess Plateau is known as one of the most severe soil erosion regions in the world.Two ecological restoration projects,i.e.,the integrated soil conservation project since the 1970s and the''Grain f...The Chinese Loess Plateau is known as one of the most severe soil erosion regions in the world.Two ecological restoration projects,i.e.,the integrated soil conservation project since the 1970s and the''Grain for Green''project since 1999,have been progressively implemented to control the soil erosion in this area.Ecological restoration has greatly changed flow regime over the past five decades.However,the mechanism of how flow regime responds to ecological restoration among landforms remains poorly understood.In this study,we investigated the temporal dynamics of flow regime in three catchments,i.e.,Wuqi,Honghe and Huangling hydrological stations,respectively representing the loess hilly-gully,loess table-gully and rocky mountain(covered by secondary forest)areas in the Chinese Loess Plateau,using daily hydrological data during the 1960s–2010s.The nonparametric Mann-Kendall test,Pettitt's test and daily flow series were used to investigate the changes of flow regime.Significantly negative trends of annual streamflow were detected at the Wuqi and Honghe stations,except for the Huangling station.The annual baseflow at the Wuqi station showed a significantly positive trend whereas a significantly negative trend was observed at the Honghe station,and there was no significant trend at the Huangling station.It was interesting that baseflow index significantly increased during the whole period in all catchments.However,the trends and change points of daily flow series derived by different percentages of exceedance and extreme series in different consecutive days varied among individuals.Based on the change points analysis of annual streamflow,we divided data series into three periods,i.e.,the baseline period(from 1959 and 1963 to 1979,PI),the integrated soil conservation period(1980–1999,PII)and the''Grain for Green''period(2000–2011,PIII).We found that streamflow decreased due to the reduction of high streamflow(exceeding 5%of time within a year)and median streamflow(50%)in PII and PIII at the Wuqi and Honghe stations.However,low flow(95%)increased in PII and PIII at the Wuqi station while decreased at the Honghe station.Streamflow change at the Huangling station was more stable,thus potentially resulting in much less soil erosion in the forestry area than in the other areas.The great improvement in ecological environment on the Chinese Loess Plateau revealed the advantages of ecological restoration in reducing flood amount and compensating streamflow at a regional scale.展开更多
Climate change and human activities make major influences on hydrology,which are known to have important impacts on streamflow variation.Therefore,it is critically important to identify how climate change and human ac...Climate change and human activities make major influences on hydrology,which are known to have important impacts on streamflow variation.Therefore,it is critically important to identify how climate change and human activities will impact streamflow variation.Thus,the goal of this study is to identify the impacts of climate change and direct human activities on annual streamflow at four hydrologic stations in the Weihe River basin of China,with the estimation of evaporation based on the Budyko hypothesis.The Mann-Kendall test was employed to detect the break points of the four stations.According to the occurrence time of break points,the data series were divided into two periods:pre-change period(1960-1984)and post-change(1985-2010)period.The parameter of one-parameter Budyko-type model was calibrated with observed data during the pre-change period,with the R^(2) values ranged from 0.95 to 0.97 and the NSE values ranged from 0.80 to 0.94,and the high R^(2) and Nash-Sutcliffe Efficiency coefficient shows the model has good performance.The contribution ratios of climate change impacts on decreasing streamflow were 37%,23%,57%and 43%,and those of the impacts of direct human activities were 63%,77%,43%and 57%for the Linjiacun,Xianyang,Lintong and Huaxian station,respectively.Both the climate change and direct human activities have positive impacts on streamflow decrease at all of the four stations,and the direct human activities are the main factor causing the decrease of annual streamflow.展开更多
There is growing concern over the effects of climate change on glacier melt and hydrology. In this article, we used two natural small-scale basins, Tuotuo River and Buqu River in the source region of the Yangtze River...There is growing concern over the effects of climate change on glacier melt and hydrology. In this article, we used two natural small-scale basins, Tuotuo River and Buqu River in the source region of the Yangtze River, China, to show the impacts of glacier melt on stream flow. Changes in the extent of glaciers and ice volume in 1970, 1992 and 2009 are evaluated using remote sensing images. Changes to the glacier surface area over the same time interval are estimated through the delineation of glacier outlines and positions using Landsat TM/ETM+ imagery. By 2009, the glacier surface area had decreased by 20.83% and 34.81% of the 1970 values in Tuotuo River and Baqu River basins respectively. The total meltwater supply in each basin is estimated to be 2.56×10^9 m^3/yr and 1.24×10^9 m^3/yr respectively. Mass balance calculations show that glaciers in the study area suffered a constant mass loss of snow and ice, accumulatively approximately -24 m over the past 40 years. The annual and summer stream flow tended to increase in Tuotuo River basin from 1970 to 2009 while a negative trend of change was shown in Buqu River basin during 1970-1986. Glaciers became shorter, narrower and thinner under the effect of atmospheric warming. Streamflow increase has been recorded at Tuotuo River station in response to increased glacier and permafrost melt. However, streamflow decrease has been recorded at Yanshiping station on Buqu River, where glacier melt has lagged behind atmospheric warming. These results show a close but variable linkage among climate change, glacier melting and water resources in the source region of the Yangtze River.展开更多
基金funded by the National Natural Science Foundation of China (41501025, 51609083, 41401038, 51509089)the 2016 Key Scientific Research Projects for Universities of Henan Province (16A170014)
文摘Climate change and Land Use/Cover Change(LUCC) have been identified as two primary factors affecting watershed hydrological regime. This study analyzed the trends of streamflow, precipitation, air temperature and potential evapotranspiration(PET) from 1962 to 2008 in the Jihe watershed in northwestern Loess Plateau of China using the Mann-Kendall test. The streamflow responses to climate change and LUCC were quantified independently by the elasticity method. The results show that the streamflow presented a dramatic decline with a turning point occurred in 1971, while the precipitation and PET did not change significantly. The results also show that the temperature rose markedly especially since 1990 s with an approximate increase of 1.74°C over the entire research period(1962–2008). Using land use transition matrix, we found that slope cropland was significantly converted to terrace between 1970 s and 1990 s and that forest cover increased relatively significantly because of the Grain for Green Project after 2000. The streamflow reduction was predominantly caused by LUCC and its contribution reached up to 90.2%, while the contribution of climate change to streamflow decline was only 9.8%. Although the analytical results between the elasticity method and linear regression model were not satisfactorily consistent, they both indicated that LUCC(human activity) was the major factor causing streamflow decline in the Jihe watershed from 1962 to 2008.
基金funded by the National Key Research and Development Program of China(2016YFC0503705)
文摘The Chinese Loess Plateau is known as one of the most severe soil erosion regions in the world.Two ecological restoration projects,i.e.,the integrated soil conservation project since the 1970s and the''Grain for Green''project since 1999,have been progressively implemented to control the soil erosion in this area.Ecological restoration has greatly changed flow regime over the past five decades.However,the mechanism of how flow regime responds to ecological restoration among landforms remains poorly understood.In this study,we investigated the temporal dynamics of flow regime in three catchments,i.e.,Wuqi,Honghe and Huangling hydrological stations,respectively representing the loess hilly-gully,loess table-gully and rocky mountain(covered by secondary forest)areas in the Chinese Loess Plateau,using daily hydrological data during the 1960s–2010s.The nonparametric Mann-Kendall test,Pettitt's test and daily flow series were used to investigate the changes of flow regime.Significantly negative trends of annual streamflow were detected at the Wuqi and Honghe stations,except for the Huangling station.The annual baseflow at the Wuqi station showed a significantly positive trend whereas a significantly negative trend was observed at the Honghe station,and there was no significant trend at the Huangling station.It was interesting that baseflow index significantly increased during the whole period in all catchments.However,the trends and change points of daily flow series derived by different percentages of exceedance and extreme series in different consecutive days varied among individuals.Based on the change points analysis of annual streamflow,we divided data series into three periods,i.e.,the baseline period(from 1959 and 1963 to 1979,PI),the integrated soil conservation period(1980–1999,PII)and the''Grain for Green''period(2000–2011,PIII).We found that streamflow decreased due to the reduction of high streamflow(exceeding 5%of time within a year)and median streamflow(50%)in PII and PIII at the Wuqi and Honghe stations.However,low flow(95%)increased in PII and PIII at the Wuqi station while decreased at the Honghe station.Streamflow change at the Huangling station was more stable,thus potentially resulting in much less soil erosion in the forestry area than in the other areas.The great improvement in ecological environment on the Chinese Loess Plateau revealed the advantages of ecological restoration in reducing flood amount and compensating streamflow at a regional scale.
基金supported by the National Natural Science Foundation of China(Granted No:51190093,51179149,51179148)National Program on Key Basic Research Project(973 Program)in China(2011CB403306-3)+1 种基金Program for New Century Excellent Talents in University(NCET-10-0933)governmental public industry research special funds for projects(201501058)and China Scholarship Council.
文摘Climate change and human activities make major influences on hydrology,which are known to have important impacts on streamflow variation.Therefore,it is critically important to identify how climate change and human activities will impact streamflow variation.Thus,the goal of this study is to identify the impacts of climate change and direct human activities on annual streamflow at four hydrologic stations in the Weihe River basin of China,with the estimation of evaporation based on the Budyko hypothesis.The Mann-Kendall test was employed to detect the break points of the four stations.According to the occurrence time of break points,the data series were divided into two periods:pre-change period(1960-1984)and post-change(1985-2010)period.The parameter of one-parameter Budyko-type model was calibrated with observed data during the pre-change period,with the R^(2) values ranged from 0.95 to 0.97 and the NSE values ranged from 0.80 to 0.94,and the high R^(2) and Nash-Sutcliffe Efficiency coefficient shows the model has good performance.The contribution ratios of climate change impacts on decreasing streamflow were 37%,23%,57%and 43%,and those of the impacts of direct human activities were 63%,77%,43%and 57%for the Linjiacun,Xianyang,Lintong and Huaxian station,respectively.Both the climate change and direct human activities have positive impacts on streamflow decrease at all of the four stations,and the direct human activities are the main factor causing the decrease of annual streamflow.
基金National Basic Research Program of China,No.2010CB951702International Science & Technology Cooperation Program of China No.2011DFA20820,No.2011DFG93160
文摘There is growing concern over the effects of climate change on glacier melt and hydrology. In this article, we used two natural small-scale basins, Tuotuo River and Buqu River in the source region of the Yangtze River, China, to show the impacts of glacier melt on stream flow. Changes in the extent of glaciers and ice volume in 1970, 1992 and 2009 are evaluated using remote sensing images. Changes to the glacier surface area over the same time interval are estimated through the delineation of glacier outlines and positions using Landsat TM/ETM+ imagery. By 2009, the glacier surface area had decreased by 20.83% and 34.81% of the 1970 values in Tuotuo River and Baqu River basins respectively. The total meltwater supply in each basin is estimated to be 2.56×10^9 m^3/yr and 1.24×10^9 m^3/yr respectively. Mass balance calculations show that glaciers in the study area suffered a constant mass loss of snow and ice, accumulatively approximately -24 m over the past 40 years. The annual and summer stream flow tended to increase in Tuotuo River basin from 1970 to 2009 while a negative trend of change was shown in Buqu River basin during 1970-1986. Glaciers became shorter, narrower and thinner under the effect of atmospheric warming. Streamflow increase has been recorded at Tuotuo River station in response to increased glacier and permafrost melt. However, streamflow decrease has been recorded at Yanshiping station on Buqu River, where glacier melt has lagged behind atmospheric warming. These results show a close but variable linkage among climate change, glacier melting and water resources in the source region of the Yangtze River.