期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical investigation on the aerodynamic drag reduction based on bottom deflectors and streamlined bogies of a high-speed train
1
作者 JIANG Chen LONG jn-lan +2 位作者 LI Yan-ong GAO Guang-jun FRANKLIN Eze 《Journal of Central South University》 SCIE EI CAS 2024年第9期3312-3328,共17页
The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In th... The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In this study,computational fluid dynamics(CFD)based on three-dimensional steady incompressible Reynolds-average Naiver-Stokes(RANS)equations and Realizable k-ε turbulence model were utilized for numerical simulations.Inspired by the concept of streamlined design and the idea of bottom flow field control,this study iteratively designed the bogies in a streamlined shape and combined them with the bottom deflectors to investigate the joint drag reduction mechanism.Three models,i.e.,single-bogie model,simplified train model,and eight-car high-speed train model,were created and their aerodynamic characteristics were analyzed.The results show that the single-bogie model with streamlined design shows a noticeable drag reduction,whose power bogie and trailer bogie experience 13.92%and 7.63%drag reduction,respectively.The range of positive pressure area on the bogie is reduced.The aerodynamic drag can be further reduced to 15.01%by installing both the streamlined bogie and the deflector on the simplified train model.When the streamlined bogies and deflectors are used on the eight-car model together,the total drag reduction rate reaches 2.90%.Therefore,the proposed aerodynamic kit for the high-speed train bottom is capable to improve the flow structure around the bogie regions,reduce the bottom flow velocity,and narrow the scope of the train’s influence on the surrounding environment,achieving the appreciable reduction of aerodynamic drag.This paper can provide a new idea for the drag reduction of high-speed trains. 展开更多
关键词 high-speed train numerical simulation drag reduction deflector streamlined design
下载PDF
Development and application of a throughflow method for high-loaded axial flow compressors 被引量:5
2
作者 LI Bo GU Chun Wei +2 位作者 LI Xiao Tang LIU Tai Qiu XIAO Yao Bing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第1期93-108,共16页
In this paper, a novel engineering platform for throughflow analysis based on streamline curvature approach is developed for the research of a 5-stage compressor. The method includes several types of improved loss and... In this paper, a novel engineering platform for throughflow analysis based on streamline curvature approach is developed for the research of a 5-stage compressor. The method includes several types of improved loss and deviation angle models, which are combined with the authors' adjustments for the purpose of reflecting the influences of three-dimensional internal flow in high-loaded multistage compressors with higher accuracy. In order to validate the reliability and robustness of the method, a series of test cases, including a subsonic compressor P&W 3S1, a transonic rotor NASA Rotor 1B and especially an advanced high pressure core compressor GE E^3 HPC, are conducted. Then the computation procedure is applied to the research of a 5-stage compressor which is designed for developing an industrial gas turbine. The overall performance and aerodynamic configuration predicted by the procedure, both at design- and part-speed conditions, are analyzed and compared with experimental results, which show a good agreement. Further discussion regarding the universality of the method compared with CFD is made afterwards. The throughflow method is verified as a reliable and convenient tool for aerodynamic design and performance prediction of modern high-loaded compressors. This method is also qualified for use in the further optimization of the 5-stage compressor. 展开更多
关键词 throughflow method multi-stage compressor high-loaded loss and deviation angle models streamline curvature aerodynamic design performance prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部