The main objective of this research is to study the effect of fiber weight ratio and chemical fiber modification on flexural properties of composites reinforced with Posidonia fiber. An unsaturated polyester matrix re...The main objective of this research is to study the effect of fiber weight ratio and chemical fiber modification on flexural properties of composites reinforced with Posidonia fiber. An unsaturated polyester matrix reinforced with untreated and treated Posidonia fibers was fabricated under various fiber weight ratios. Results showed that the combined chemical treatment provided better mechanical properties of composites in comparison with untreated fiber. The fiber weight ratio influenced the flexural properties of composites. Indeed, a maximum value of flexural modulus was observed for 10% fiber weight ratio for composites reinforced with treated fibers. SEM photographs revealed a different fracture surface between Posidonia fibers reinforced polyester composites.展开更多
文摘The main objective of this research is to study the effect of fiber weight ratio and chemical fiber modification on flexural properties of composites reinforced with Posidonia fiber. An unsaturated polyester matrix reinforced with untreated and treated Posidonia fibers was fabricated under various fiber weight ratios. Results showed that the combined chemical treatment provided better mechanical properties of composites in comparison with untreated fiber. The fiber weight ratio influenced the flexural properties of composites. Indeed, a maximum value of flexural modulus was observed for 10% fiber weight ratio for composites reinforced with treated fibers. SEM photographs revealed a different fracture surface between Posidonia fibers reinforced polyester composites.
基金Project(2012JQ7013) supported by Natural Science Foundation of Shaanxi ProvinceProject(Z109021108) supported by Special Matching Funds of Shaanxi Province+1 种基金Project(QN2012025) supported by the Fundamental Research Funds for the Central UniversitiesPhD project(2011BSJJ084) supported by Research Foundation of Northwest A&F University