High-performance metal additive manufacturing (AM) has been extensively investigated in recent years because of its unique advantages over traditional manufacturing processes. AM has been applied to form complex com...High-performance metal additive manufacturing (AM) has been extensively investigated in recent years because of its unique advantages over traditional manufacturing processes. AM has been applied to form complex components of Ti, Fe or Ni alloys. However, for other nonferrous alloys such as AI alloys, Mg alloys and Cu alloys, AM may not be appropriate because of its melting nature during processing by laser, electron beam, and/or arc. Cold spraying (CS) has been widely accepted as a promising solid-state coating technique in last decade for its mass production of high-quality metals and alloys, and/or metal matrix composites coatings. It is now recognized as a useful and powerful tool for AM, but the related research work has just started. This review summarized the literature on the state-of-the-art and problems for CS as an AM and repairing technique.展开更多
Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A br...Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A brief review on the development of the b-type titanium alloys with high strength and low elastic modulus is given and the use of additive manufacturing technologies to produce porous titanium alloy parts,using Ti-6Al-4V as a reference,and its potential in fabricating biomedica replacements are discussed in this paper.展开更多
Under the as-welded condition the fatigue crack initiation period was considered nonexistent and Linear Elastic Fracture Mechanics(LEFM) was used to calculate fatigue strength for a range of weld geometries. Fractur...Under the as-welded condition the fatigue crack initiation period was considered nonexistent and Linear Elastic Fracture Mechanics(LEFM) was used to calculate fatigue strength for a range of weld geometries. Fracture mechanics assessment of welded joints requires accurate solutions for stress intensity factor(SIF). However, the solutions for the SIF of complex welded joints are dificult to determine due to the complicated correction factors. Three methods for SIF prediction are discussed on illet welded specimens containing continuous or semi-elliptical surface cracks, including the traditional correction method Mk, the approximate correction method Kt, and the suggested additional crack size method(ac+ae).The new additional crack parameter ae is used to replace the stress concentration effect of weld proile Mk, which simpliies the calculation process. Experimental results are collected to support fatigue strength assessment of the additional crack size method.展开更多
基金the financial support from the National Key Research and Development Program of China (2016YFB0701203)the National Natural Science Foundation of China (51574196)+1 种基金the fund of SAST (SAST2016043)the 111 Project (B08040)
文摘High-performance metal additive manufacturing (AM) has been extensively investigated in recent years because of its unique advantages over traditional manufacturing processes. AM has been applied to form complex components of Ti, Fe or Ni alloys. However, for other nonferrous alloys such as AI alloys, Mg alloys and Cu alloys, AM may not be appropriate because of its melting nature during processing by laser, electron beam, and/or arc. Cold spraying (CS) has been widely accepted as a promising solid-state coating technique in last decade for its mass production of high-quality metals and alloys, and/or metal matrix composites coatings. It is now recognized as a useful and powerful tool for AM, but the related research work has just started. This review summarized the literature on the state-of-the-art and problems for CS as an AM and repairing technique.
基金financially supported by the National High Technology Research and Development Program of China (No.2015AA033702)the National Basic Research Program of China (Nos.2012CB619103 and 2012CB933901)the National Natural Science Foundation of China (Nos.51271180 and 51271182)
文摘Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A brief review on the development of the b-type titanium alloys with high strength and low elastic modulus is given and the use of additive manufacturing technologies to produce porous titanium alloy parts,using Ti-6Al-4V as a reference,and its potential in fabricating biomedica replacements are discussed in this paper.
基金Project supported by the National Natural Science Foundation of China(No.51609185)the State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University(No.1613)
文摘Under the as-welded condition the fatigue crack initiation period was considered nonexistent and Linear Elastic Fracture Mechanics(LEFM) was used to calculate fatigue strength for a range of weld geometries. Fracture mechanics assessment of welded joints requires accurate solutions for stress intensity factor(SIF). However, the solutions for the SIF of complex welded joints are dificult to determine due to the complicated correction factors. Three methods for SIF prediction are discussed on illet welded specimens containing continuous or semi-elliptical surface cracks, including the traditional correction method Mk, the approximate correction method Kt, and the suggested additional crack size method(ac+ae).The new additional crack parameter ae is used to replace the stress concentration effect of weld proile Mk, which simpliies the calculation process. Experimental results are collected to support fatigue strength assessment of the additional crack size method.