Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks u...Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks under cyclic loading fail at much lower strength as compared to those subjected to the monotonic loading conditions. A few selected cored granodiorite and sandstone specimens have been subjected to uniaxial cyclic compression tests to obtain the unconfined fatigue strength and life. This study seeks to examine the effects of cyclic loading conditions, loading amplitude and applied stress level on the fatigue life of sandstone, as a soft rock, and granodiorite, as a hard rock, under uniaxial compression test. One aim of this study is to determine which of the loading conditions has a stronger effect on rock fatigue response. The fatigue response of hard rocks and soft rocks is also compared. It is shown that the loading amplitude is the most important factor affecting the cyclic response of the tested rocks. The more the loading amplitude, the shorter the fatigue life, and the greater the strength degradation. The granodiorite specimens showed more strength degradation compared to the sandstone specimens when subjected to cyclic loading. It is shown that failure modes of specimens under cyclic loadings are different from those under static loadings. More local cracks were observed under cyclic loadings especially for granodiorite rock specimens.展开更多
In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sed...In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sedimentary rock specimens. Four hundred nineteen rock samples from various areas along the coastal region of the UAE were collected and tested for the development of this dataset and evaluation of models. From the statistical analysis of the data, regression equations were established among rock parameters and correlations were expressed and compared by the ones proposed in literature.展开更多
The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in Ch...The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling.展开更多
Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in a...Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in an internal waste dump;the physical and mechanical parameters of the remodeled rock mass dumped at different time and depths were measured.Based on statistics,regression analysis was performed with regard to the shearing stress parameters acquired from the two tests.Other factors,such as remodeling pressure(burial depth),remodeling time(amount of time since waste was dumped),and the corresponding functional relationship,were determined.Analysis indicates that the cohesion of the remodeled clay and its remodeling pressure are correlated by a quadratic function but are not correlated with remodeling time length.In situ experimental results indicate that the shear strength of reshaped granular materials in the internal dump is positively correlated with burial depth but poorly correlated with time length.Cohesion Cand burial depth H follow a quadratic function,specifically for a short time since waste has been dumped.As revealed by both in situ and laboratory experiments,the remodeling strength of granular materials varies in a certain pattern.The consistency of such materials verifies the reliability of the remodeling experimental program.展开更多
Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite sol...Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant were further investigated. These experiments were conducted through the use of a new uniaxial INSTRON testing machine, different new designed gripping apparatus and samples with different configurations. According to the test results, dynamic uniaxial tensile strength criterion of the propellant was directly constructed with the master curve of the uniaxial maximum tensile stress. Whereas, a new method was proposed to determine the dynamic uniaxial compressive strength of the propellant in this study. Then uniaxial compressive strength criterion of the propellant was constructed based on the related master curve. Moreover, it found that the uniaxial tensilecompressive strength ratio of the propellant is more sensitive to loading temperature under the test conditions. The value of this parameter is about 0.4 at room temperature, and it reduces to 0.2-0.3 at low temperatures. Finally, the theoretical biaxial strength criterion of HTPB propellant under dynamic loading was constructed with the unified strength theory, the uniaxial strength and the typical biaxial tensile strength. In addition, the theoretical limit lines of the principal stress plane for the propellant under dynamic loading at different temperatures were further plotted, and the scope of the limit line increases with decreasing temperature.展开更多
In order to solve the problem of calculating the ultimate strength of marine plate under pitting corrosion,the plate taking from marine with pitting corrosion was studied. Based on the data of pitting corrosion record...In order to solve the problem of calculating the ultimate strength of marine plate under pitting corrosion,the plate taking from marine with pitting corrosion was studied. Based on the data of pitting corrosion recorded,the concept of pitting corrosion characteristic element matrix was proposed to describe the distribution and the forms of pitting. Moreover,the model of sensitivity calculation was established to analyse the sensitivity of pitting corrosion characteristic elements for the ultimate bearing capacity of ship structural plate. A new approach was proposed to calculate the ultimate strength of pitting damaged ship structural plate under combined loads based on the factor of rigidity reduction. Simultaneously this new approach was proven to be validated by finite element simulation. Finally,formula of ultimate strength of pitting damaged ship hull plate was established by series of numerical calculations based on the approach,and the reliability of the formula was validated as well.展开更多
The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Ba...The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus. The relationship between the residual secant elastic modulus and number of cycles was also established.展开更多
Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the inciden...Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2-4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding.Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing failure.展开更多
Dynamic strength behavior of Zr51Ti5NiloCu25A19 bulk metallic glass (BMG) up to 66 GPa was investigated in a series of plate impact shock-release and shock-reload experiments. Particle velocity profiles measured at ...Dynamic strength behavior of Zr51Ti5NiloCu25A19 bulk metallic glass (BMG) up to 66 GPa was investigated in a series of plate impact shock-release and shock-reload experiments. Particle velocity profiles measured at the sample/LiF window interface were used to estimate the shear stress, shear modulus, and yield stress in shocked BMG. Beyond confirm- ing the previously reported strain-softening of shear stress during the shock loading process for BMGs, it is also shown that the softened Zr-BMG still has a high shear modulus and can support large yield stress when released or reloaded from the shocked state, and both the shear modulus and the yield stress appear as strain-hardening behaviors. The work provides a much clearer picture of the strength behavior of BMGs under shock loading, which is useful to comprehensively understand the plastic deformation mechanisms of BMGs.展开更多
To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkali...To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkaline solution at elevated temperature. The bars were carefully extracted from the beams and tested in order to evaluate residual tensile properties. The results show that the tensile strength decreased significantly in the highly aggressive conditions but not in the natural conditions. The effect of GFRP bars casting in concrete beams demonstrated approximately 2.5% decrease of tensile strength caused by pore water environment in concrete beams on basis of those of the original bars. The effect of sustained loading plus work cracks demonstrated about 10.5% tensile strength decrease on basis of those of the bars only casted in concrete beams. The effect of environments under sustained loading plus work cracks demonstrated about 17% tensile strength decrease caused by a saturated solution of Ca(OH)2 and 60-2 ℃ tap water (pH=12-13) and about 8% tensile strength decrease caused by freezing and thawing cycle (F/T), both on basis of those of the bars of the indoor beams only under sustained loading plus work cracks. The results demonstrate the effects of the tensile strengths under different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads.展开更多
To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with di...To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases.展开更多
In this paper, the influence of loading rate and specimen height on flexural strength of Al2O3 at high temperatures has been studied by three-point bending method. The experimental results show that the flexural stren...In this paper, the influence of loading rate and specimen height on flexural strength of Al2O3 at high temperatures has been studied by three-point bending method. The experimental results show that the flexural strength of Al2O3 decreases with increasing specimen height at room temperature, and it tends to stability when height increases to a certain degree (h=5mm in this paper), while the flexural strength of Al2O3 variates unapparently at high temperature with increasing height. There is a critical loading rate R . c. When loading rate R . is less than R . c, the flexural strength of Al2O3 increases with increasing loading rate and it drops sharply when loading rate is higher than R . c. The sensitivity of flexural strength to the loading rate decreases with elevating temperatures.展开更多
The major objective of this research was to discuss the effects of loading rate on the flexural-tension properties and uniaxial compressive strength of micro-surfacing mixture using three-point bending test and uniaxi...The major objective of this research was to discuss the effects of loading rate on the flexural-tension properties and uniaxial compressive strength of micro-surfacing mixture using three-point bending test and uniaxial compressive test respectively. As a preventive maintenance surface treatment on asphalt pavement, micro-surfacing was formed on the basis of the ISSA recommendation of an optimum micro-surfacing design. Tests were conducted over a wide range of temperature to investigate the difference of properties from low loading rate to a relatively high loading rate. Three-point bending test was used to study the flexural strength, strain and modulus of micro-surfacing mixture, and uniaxial compressive test was carried out to obtain the relationship between strength and the loading rate as well as temperature. The experimental results showed that flexural strength at high loading rate was larger than that at low loading rate. The flexural strength difference between low and high loading rate enlarged when the temperature rose. The flexural strain at high loading rate increased compared with results of the low loading rate. Results of the flexural modulus revealed that micro-surfacing mixture exhibited better anti-cracking characteristic at low temperature when given a relatively low loading rate. Results of uniaxial compressive test revealed that the strength difference of micro-surfacing among different loading rates increased with the increase of temperature. The logarithm relationship between the strength and loading rate over a wide range of temperature was obtained to compare the experimental and predicted values, which resulting in a reasonable consistency.展开更多
The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I an...The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I and II are same and the dynamic stress ampli- tude of Group II is twice as that of Group I. The minimum value of dynamic stress in Group IlI is near zero and its dynamic stress amplitude is larger than those of Groups I and II. In tests of all three groups there are similar change trends of accttmulative sWain, but with different values. The accumulative swain curves consist of three stages, namely, the initial stage, the steady stage, and the gradual flow stage. In the tests of Groups I and II, during the initial stage with vibration times less than 50 loops the strain ampli- tude decreased with the increase of vibration times and then basically remained constant, fluctuating in a very small range. For the tests of Group III, during the initial and steady stages the sWain amplitude decreased with the increase of vibration times, and then increased rapidly in the gradual flow stage. The dynamic strength of frozen silt decreases and trends to terminal dynamic strength as the vibration times of loading increase.展开更多
基金Mining Research Institute of Western Australia (MRIWA) for the financial support
文摘Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks under cyclic loading fail at much lower strength as compared to those subjected to the monotonic loading conditions. A few selected cored granodiorite and sandstone specimens have been subjected to uniaxial cyclic compression tests to obtain the unconfined fatigue strength and life. This study seeks to examine the effects of cyclic loading conditions, loading amplitude and applied stress level on the fatigue life of sandstone, as a soft rock, and granodiorite, as a hard rock, under uniaxial compression test. One aim of this study is to determine which of the loading conditions has a stronger effect on rock fatigue response. The fatigue response of hard rocks and soft rocks is also compared. It is shown that the loading amplitude is the most important factor affecting the cyclic response of the tested rocks. The more the loading amplitude, the shorter the fatigue life, and the greater the strength degradation. The granodiorite specimens showed more strength degradation compared to the sandstone specimens when subjected to cyclic loading. It is shown that failure modes of specimens under cyclic loadings are different from those under static loadings. More local cracks were observed under cyclic loadings especially for granodiorite rock specimens.
文摘In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sedimentary rock specimens. Four hundred nineteen rock samples from various areas along the coastal region of the UAE were collected and tested for the development of this dataset and evaluation of models. From the statistical analysis of the data, regression equations were established among rock parameters and correlations were expressed and compared by the ones proposed in literature.
基金Supported by the National Natural Science Foundation of China (40318002)
文摘The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling.
基金Project(2014XT01)supported by Research Funds for the Central Universities,ChinaProject(51034005)supported by the National Natural Science Foundation of China+1 种基金Project(2012AA062004)supported by High-Tech Research and Development Program of China(863 Program)Project(NCET-13-1022)supported by the Program for New Century Excellent Talents in University,China
文摘Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in an internal waste dump;the physical and mechanical parameters of the remodeled rock mass dumped at different time and depths were measured.Based on statistics,regression analysis was performed with regard to the shearing stress parameters acquired from the two tests.Other factors,such as remodeling pressure(burial depth),remodeling time(amount of time since waste was dumped),and the corresponding functional relationship,were determined.Analysis indicates that the cohesion of the remodeled clay and its remodeling pressure are correlated by a quadratic function but are not correlated with remodeling time length.In situ experimental results indicate that the shear strength of reshaped granular materials in the internal dump is positively correlated with burial depth but poorly correlated with time length.Cohesion Cand burial depth H follow a quadratic function,specifically for a short time since waste has been dumped.As revealed by both in situ and laboratory experiments,the remodeling strength of granular materials varies in a certain pattern.The consistency of such materials verifies the reliability of the remodeling experimental program.
基金financial support of the National 973 Program in China (No. 61338)the National Funds in China (Nos.11772352, 61407200203 and 51328050101)
文摘Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant were further investigated. These experiments were conducted through the use of a new uniaxial INSTRON testing machine, different new designed gripping apparatus and samples with different configurations. According to the test results, dynamic uniaxial tensile strength criterion of the propellant was directly constructed with the master curve of the uniaxial maximum tensile stress. Whereas, a new method was proposed to determine the dynamic uniaxial compressive strength of the propellant in this study. Then uniaxial compressive strength criterion of the propellant was constructed based on the related master curve. Moreover, it found that the uniaxial tensilecompressive strength ratio of the propellant is more sensitive to loading temperature under the test conditions. The value of this parameter is about 0.4 at room temperature, and it reduces to 0.2-0.3 at low temperatures. Finally, the theoretical biaxial strength criterion of HTPB propellant under dynamic loading was constructed with the unified strength theory, the uniaxial strength and the typical biaxial tensile strength. In addition, the theoretical limit lines of the principal stress plane for the propellant under dynamic loading at different temperatures were further plotted, and the scope of the limit line increases with decreasing temperature.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51309231 and 51779261)
文摘In order to solve the problem of calculating the ultimate strength of marine plate under pitting corrosion,the plate taking from marine with pitting corrosion was studied. Based on the data of pitting corrosion recorded,the concept of pitting corrosion characteristic element matrix was proposed to describe the distribution and the forms of pitting. Moreover,the model of sensitivity calculation was established to analyse the sensitivity of pitting corrosion characteristic elements for the ultimate bearing capacity of ship structural plate. A new approach was proposed to calculate the ultimate strength of pitting damaged ship structural plate under combined loads based on the factor of rigidity reduction. Simultaneously this new approach was proven to be validated by finite element simulation. Finally,formula of ultimate strength of pitting damaged ship hull plate was established by series of numerical calculations based on the approach,and the reliability of the formula was validated as well.
基金the Doctoral Authorization Point Foundation of China(No.30300078)
文摘The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus. The relationship between the residual secant elastic modulus and number of cycles was also established.
基金the Science and Technology authority of Taiwan, China, for financially supporting this research under Grant No.NSC 102-2221-E-027-071-MY3
文摘Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2-4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding.Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing failure.
基金Project supported by the National Natural Science Foundation of China(Grant No.11172281)
文摘Dynamic strength behavior of Zr51Ti5NiloCu25A19 bulk metallic glass (BMG) up to 66 GPa was investigated in a series of plate impact shock-release and shock-reload experiments. Particle velocity profiles measured at the sample/LiF window interface were used to estimate the shear stress, shear modulus, and yield stress in shocked BMG. Beyond confirm- ing the previously reported strain-softening of shear stress during the shock loading process for BMGs, it is also shown that the softened Zr-BMG still has a high shear modulus and can support large yield stress when released or reloaded from the shocked state, and both the shear modulus and the yield stress appear as strain-hardening behaviors. The work provides a much clearer picture of the strength behavior of BMGs under shock loading, which is useful to comprehensively understand the plastic deformation mechanisms of BMGs.
基金Funded Partly by the National Natural Science Foundation of China(No.51178361)
文摘To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkaline solution at elevated temperature. The bars were carefully extracted from the beams and tested in order to evaluate residual tensile properties. The results show that the tensile strength decreased significantly in the highly aggressive conditions but not in the natural conditions. The effect of GFRP bars casting in concrete beams demonstrated approximately 2.5% decrease of tensile strength caused by pore water environment in concrete beams on basis of those of the original bars. The effect of sustained loading plus work cracks demonstrated about 10.5% tensile strength decrease on basis of those of the bars only casted in concrete beams. The effect of environments under sustained loading plus work cracks demonstrated about 17% tensile strength decrease caused by a saturated solution of Ca(OH)2 and 60-2 ℃ tap water (pH=12-13) and about 8% tensile strength decrease caused by freezing and thawing cycle (F/T), both on basis of those of the bars of the indoor beams only under sustained loading plus work cracks. The results demonstrate the effects of the tensile strengths under different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads.
基金the National Natural Science Foundation of China under Grant No.51478244
文摘To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases.
文摘In this paper, the influence of loading rate and specimen height on flexural strength of Al2O3 at high temperatures has been studied by three-point bending method. The experimental results show that the flexural strength of Al2O3 decreases with increasing specimen height at room temperature, and it tends to stability when height increases to a certain degree (h=5mm in this paper), while the flexural strength of Al2O3 variates unapparently at high temperature with increasing height. There is a critical loading rate R . c. When loading rate R . is less than R . c, the flexural strength of Al2O3 increases with increasing loading rate and it drops sharply when loading rate is higher than R . c. The sensitivity of flexural strength to the loading rate decreases with elevating temperatures.
文摘The major objective of this research was to discuss the effects of loading rate on the flexural-tension properties and uniaxial compressive strength of micro-surfacing mixture using three-point bending test and uniaxial compressive test respectively. As a preventive maintenance surface treatment on asphalt pavement, micro-surfacing was formed on the basis of the ISSA recommendation of an optimum micro-surfacing design. Tests were conducted over a wide range of temperature to investigate the difference of properties from low loading rate to a relatively high loading rate. Three-point bending test was used to study the flexural strength, strain and modulus of micro-surfacing mixture, and uniaxial compressive test was carried out to obtain the relationship between strength and the loading rate as well as temperature. The experimental results showed that flexural strength at high loading rate was larger than that at low loading rate. The flexural strength difference between low and high loading rate enlarged when the temperature rose. The flexural strain at high loading rate increased compared with results of the low loading rate. Results of the flexural modulus revealed that micro-surfacing mixture exhibited better anti-cracking characteristic at low temperature when given a relatively low loading rate. Results of uniaxial compressive test revealed that the strength difference of micro-surfacing among different loading rates increased with the increase of temperature. The logarithm relationship between the strength and loading rate over a wide range of temperature was obtained to compare the experimental and predicted values, which resulting in a reasonable consistency.
基金supported by the National Natural Science Foundation of China (Nos. 40971046, 41023003)the Project from the State Key Laboratory of Frozen Soil Engineering of China (No. 09SF102003)
文摘The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I and II are same and the dynamic stress ampli- tude of Group II is twice as that of Group I. The minimum value of dynamic stress in Group IlI is near zero and its dynamic stress amplitude is larger than those of Groups I and II. In tests of all three groups there are similar change trends of accttmulative sWain, but with different values. The accumulative swain curves consist of three stages, namely, the initial stage, the steady stage, and the gradual flow stage. In the tests of Groups I and II, during the initial stage with vibration times less than 50 loops the strain ampli- tude decreased with the increase of vibration times and then basically remained constant, fluctuating in a very small range. For the tests of Group III, during the initial and steady stages the sWain amplitude decreased with the increase of vibration times, and then increased rapidly in the gradual flow stage. The dynamic strength of frozen silt decreases and trends to terminal dynamic strength as the vibration times of loading increase.