期刊文献+
共找到2,939篇文章
< 1 2 147 >
每页显示 20 50 100
Optimizing profile line interval for enhanced accuracy in rock joint morphology and shear strength assessments
1
作者 Leibo Song Quan Jiang +5 位作者 Shigui Du Jiamin Song Gang Wang Yanting Gu Xingkai Wang Jinzhong Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期587-608,共22页
2D profile lines play a critical role in cost-effectively evaluating rock joint properties and shear strength.However, the interval(ΔI_(L)) between these lines significantly impacts roughness and shear strength asses... 2D profile lines play a critical role in cost-effectively evaluating rock joint properties and shear strength.However, the interval(ΔI_(L)) between these lines significantly impacts roughness and shear strength assessments. A detailed study of 45 joint samples using four statistical measures across 500 different ΔI_(L)values identified a clear line interval effect with two stages: stable and fluctuation-discrete.Further statistical analysis showed a linear relationship between the error bounds of four parameters,shear strength evaluation, and their corresponding maximum ΔI_(L)values, where the gradient k of this linear relationship was influenced by the basic friction angle and normal stress. Accounting for these factors,lower-limit linear models were employed to determine the optimal ΔI_(L)values that met error tolerances(1%–10%) for all metrics and shear strength. The study also explored the consistent size effect on joints regardless of ΔI_(L)changes, revealing three types of size effects based on morphological heterogeneity.Notably, larger joints required generally higher ΔI_(L)to maintain the predefined error limits, suggesting an increased interval for large joint analyses. Consequently, this research provides a basis for determining the optimal ΔI_(L), improving accuracy in 2D profile line assessments of joint characteristics. 展开更多
关键词 Rock joint ROUGHNESS Shear strength Size effect Profile line interval effect
下载PDF
Strength calculation methodology for internally ring- stiffened DT- joints 被引量:1
2
作者 王帆 蓝小艺 +4 位作者 潘晓荣 宁晨 许晓峰 刘丁丁 罗志峰 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期67-72,共6页
In order to obtain the strength design equations for internally ring-stiffened circular hollowsection tubular DT( double tee)-joints subjected to brace axial compression or tension, theoretical and numerical studies... In order to obtain the strength design equations for internally ring-stiffened circular hollowsection tubular DT( double tee)-joints subjected to brace axial compression or tension, theoretical and numerical studies on 800 stiffened joints were conducted. Based on the failure mechanism of the stiffened joints, four theoretical models and corresponding equations for predicting the strength of the stiffeners are proposed. Combined with existing unstiffened DT-joint design equations, a design equation for the stiffened joints is proposed. The finite element analysis shows that the failure of the stiffened joints under brace axial loads can be characterized by plastic hinges forming in the stiffener and chord wall yielding in the vicinity of the brace-chord intersection. The reliability of the proposed stiffener strength equations is demonstrated by a reliability analysis. Good agreement is achieved between the stiffened joint strength calculated from the proposed joint strength equation and that obtained from finite element analysis. 展开更多
关键词 double-tee joint ring-stiffener failure mechanism ultimate strength
下载PDF
Characteristics of structural loess strength and preliminary framework for joint strength formula 被引量:18
3
作者 Rong-jian LI Jun-ding LIU +2 位作者 Rui YAN Wen ZHENG Sheng-jun SHAO 《Water Science and Engineering》 EI CAS CSCD 2014年第3期319-330,共12页
The strength of structural loess consists of the shear strength and tensile strength. In this study, the stress path, the failure envelope of principal stress ( Kf line), and the strength failure envelope of structu... The strength of structural loess consists of the shear strength and tensile strength. In this study, the stress path, the failure envelope of principal stress ( Kf line), and the strength failure envelope of structurally intact loess and remolded loess were analyzed through three kinds of tests: the tensile strength test, the uniaxial compressive strength test, and the conventional triaxial shear strength test. Then, in order to describe the tensile strength and shear strength of structural loess comprehensively and reasonably, a joint strength formula for structural loess was established. This formula comprehensively considers tensile and shear properties. Studies have shown that the tensile strength exhibits a decreasing trend with increasing water content. When the water content is constant, the tensile strength of the structurally intact soil is greater than that ofremolded soil. In the studies, no loss of the originally cured cohesion in the structurally intact soil samples was observed, given that the soil samples did not experience loading disturbance during the uniaxial compressive strength test, meaning there is a high initial structural strength. The results of the conventional triaxial shear strength test show that the water content is correlated with the strength of the structural loess. When the water content is low, the structural properties are strong, and when the water content is high, the structural properties are weak, which means that the water content and the ambient pressure have significant effects on the stress-strain relationship of structural loess. The established joint strength formula of structural loess effectively avoids overestimating the role of soil tensile strength in the traditional theory of Mohr-Coulomb strength. 展开更多
关键词 structurally intact loess remolded loess tensile strength shear strength stress path failure envelope of principal stress Kf line) strength failure envelope joint strength formula
下载PDF
Strength behaviour of a model rock intersected by non-persistent joint 被引量:6
4
作者 Divya Shaunik Mahendra Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第6期1243-1255,共13页
Several constructions in the field of civil engineering quite often need to deal with rocks.Strength behaviour of rock intersected by a discontinuity or a set of discontinuities has been a topic of keen interest for e... Several constructions in the field of civil engineering quite often need to deal with rocks.Strength behaviour of rock intersected by a discontinuity or a set of discontinuities has been a topic of keen interest for engineering community.The popular attributes of discontinuities that have been given due importance are their frequency,orientation and surface characteristics.Non-persistency,however,has been given little attention.This article presents an experimental study wherein focus has been made on the effect of non-persistency of the joint on the uniaxial compressive strength(UCS)of a model rock for various geometries such as orientation,discontinuity length ratio and number of joint segments.The applicability of single plane of weakness theory(SPWT)to assess the strength of jointed specimens has also been evaluated.It has been noticed that SPWT captures the strength behaviour only for a narrow range of discontinuity orientations.As an improvement,an approach is suggested by extending concepts of degree of persistence and joint factor to have a better understanding towards strength behaviour of rocks intersected by non-persistent joints. 展开更多
关键词 Uniaxial compressive strength (UCS) joint segment Non-persistency joint factor
下载PDF
Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass 被引量:19
5
作者 Sheng-Qi Yang Yan-Hua Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第4期547-558,共12页
A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of... A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of rock-like material, a set of micro-parameters in PFC2D that reflected the macro-mechanical behavior of rock-like materials were obtained. And then PFC2D was used to simulate Brazilian splitting test for jointed rock mass specimens and specimen containing a central straight notch. The effect of joint angle and notch angle on the tensile strength and failure mode of jointed rock specimens was detailed analyzed. In order to reveal the meso-mechanical mechanism of crack coalescence, displacement trend lines were applied to analyze the displacement evolution during the crack initiation and propagation. The investigated conclusions can be described as follows. (1) The tensile strength of jointed rock mass disc specimen is dependent to the joint angle. As the joint angle increases, the tensile strength of jointed rock specimen takes on a nonlinear variance. (2) The tensile strength of jointed rock mass disc specimen containing a central straight notch distributes as a function of both joint angle and notch angle. (3) Three major failure modes, i.e., pure tensile failure, shear failure and mixed tension and shear failure mode are observed in jointed rock mass disc specimens under Brazilian test. (4) The notch angle roles on crack initiation and and joint angle play important propagation characteristics of jointed rock mass disc specimen containing a central straight notch under Brazilian test. 展开更多
关键词 jointed rock mass Brazilian splitting test. Ten-sile strength· Failure mode PFC2D
下载PDF
Strength of massive to moderately jointed hard rock masses 被引量:5
6
作者 R.P.Bewick P.K.Kaiser F.Amann 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第3期562-575,共14页
The Hoek-Brown (HB) failure criterion and the geological strength index (GSI) were developed for the estimation of rock mass strength in jointed and blocky ground where rock mass failure is dominated by sliding along ... The Hoek-Brown (HB) failure criterion and the geological strength index (GSI) were developed for the estimation of rock mass strength in jointed and blocky ground where rock mass failure is dominated by sliding along open joints and rotation of rock blocks. In massive, veined and moderately jointed rock in which rock blocks cannot form without failure of intact rock, the approach to obtain HB parameters must be modified. Typical situations when these modifications are required include the design of pillars, excavation and cavern stability, strainburst potential assessment, and tunnel support in deep underground conditions (around σ1/σci > 0.15, where σ1 is the major principal compressive stress and σci is the unconfined compressive strength of the homogeneous rock) in hard brittle rocks with GSI ≥ 65. In this article, the strength of massive to moderately jointed hard rock masses is investigated, and an approach is presented to estimate the rock mass strength envelope using laboratory data from uniaxial and triaxial compressive strength tests without reliance on the HB-GSI equations. The data from tests on specimens obtained from massive to moderately jointed heterogeneous (veined) rock masses are used to obtain the rock and rock mass strengths at confining stress ranges that are relevant for deep tunnelling and mining;and a methodology is presented for this purpose from laboratory data alone. By directly obtaining the equivalent HB rock mass strength envelope for massive to moderately jointed rock from laboratory tests, the HB-GSI rock mass strength estimation approach is complemented for conditions where the GSIequations are not applicable. Guidance is also provided on how to apply the proposed approach when laboratory test data are not or not yet available. 展开更多
关键词 BRITTLE ROCK Uniaxial compressive strength(UCS) Geological strength index(GSI) MASSIVE to moderately jointed ROCK MASSES
下载PDF
Seismic performance of steel reinforced ultra high-strength concrete composite frame joints 被引量:5
7
作者 Yan Changwang Jia Jinqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期439-448,共10页
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens... To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications. 展开更多
关键词 cyclical test axial load ratio volumetric stirrup ratio DUCTILITY strength degradation stiffness degradation steel reinforced ultra high strength concrete beam-column joint
下载PDF
Numerical investigation on the sensitivity of jointed rock mass strength to various factors 被引量:14
8
作者 NIU Shuangjian JING Hongwen +1 位作者 HU Kun YANG Dafang 《Mining Science and Technology》 EI CAS 2010年第4期530-534,共5页
The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual s... The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual strengths) to the factors that affect it. An orthogonal design of uniaxial compression tests was simulated on eighteen groups of jointed rock specimens having different geometric and mechanical properties using RFPA2D (Rock Failure Process Analysis) code. The results show that the peak strength is controlled by the geometric parameters of the joints, but that the residual strength is controlled by the mechanical prop- erties of the joint interfaces. The failure mode of jointed rock specimens is mainly shear failure. Joint quantity, or density, is the most important index that affects jointed rock mass strength and engineering quality. 展开更多
关键词 jointed rock mass peak strength residual strength variance analysis sensitivity
下载PDF
Determination of geological strength index of jointed rock mass based on image processing 被引量:8
9
作者 Kunui Hong Eunchol Han Kwangsong Kang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期702-708,共7页
The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the... The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%. 展开更多
关键词 jointed rock mass Geological strength index(GSI) Image processing Fractal dimension Artificial neural network(ANN)
下载PDF
Prediction of Cross-Tension Strength of Self-Piercing Riveted Joints Using Finite Element Simulation and XGBoost Algorithm 被引量:8
10
作者 Jianping Lin Chengwei Qi +4 位作者 Hailang Wan Junying Min Jiajie Chen Kai Zhang Li Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第2期168-178,共11页
Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension stren... Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension strength of SPR joints was proposed on the basis of finite element(FE)simulation and extreme gradient boosting decision tree(XGBoost)algorithm.An FE model of SPR process was established to simulate the plastic deformations of rivet and substrate materials and verified in terms of cross-sectional dimensions of SPR joints.The residual mechanical field from SPR process simulation was imported into a 2D FE model for the cross-tension testing simulation of SPR joints,and cross-tension strengths from FE simulation show a good consistence with the experiment result.Based on the verified FE model,the mechanical properties and thickness of substrate materials were varied and then used for FE simulation to obtain cross-tension strengths of a number of SPR joints,which were used to train the regression model based on the XGBoost algorithm in order to achieve prediction for cross-tension strength of SPR joints.Results show that the cross-tension strengths of SPR steel/aluminum joints could be successfully predicted by the XGBoost regression model with a respective error less than 7.6%compared to experimental values. 展开更多
关键词 Self-piercing riveting joint strength Cross-tension Finite element modeling Machine learning
下载PDF
New Developed Welding Electrode for Improving the Fatigue Strength of Welded Joints 被引量:3
11
作者 Wenxian WANG, Lixing HUO, Yufeng ZHANG, Dongpo WANG and Hongyang JINGCollege of Material Science and Engineering, Tianjin University, Tianjin 300072, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第6期527-531,共5页
A new welding electrode, low transformation temperature electrode (LTTE), was introduced in this paper. It was described in design principle, mechanics, chemical compositions of their deposited metal and manufacturing... A new welding electrode, low transformation temperature electrode (LTTE), was introduced in this paper. It was described in design principle, mechanics, chemical compositions of their deposited metal and manufacturing methods. It was proved that the best transformation starting temperature from austenite to martensite of the deposited metal of LTTE was at about 191℃ and it was obtained by adding alloying elements such as Cr, Ni, Mn and Mo. The microstructure of the weld metal of the LTTE was low carbon martensite and residual austenite. The compressive residual stress was induced around the weld of the LTTE and the -145 MPa in compression could be obtained in middle of weld metal. The fatigue tests showed that the fatigue strength of the longitudinal welded joints welded with the LTTE at 2×106 cycles was improved by 59% compared with that of the same type of welded joints welded with conventional E5015 and the fatigue life was increased by 47 times at 162 MPa. It is a very valuable method to improve the fatigue performance of welded joints. 展开更多
关键词 Low transformation temperature electrode Compressive residual stress Fatigue strength Welded joints
下载PDF
A roughness parameter considering joint material properties and peak shear strength model for rock joints 被引量:3
12
作者 Liren Ban Weisheng Du +2 位作者 Tianwei Jin Chengzhi Qi Xiaozhao Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期413-420,共8页
This study aims at proposing a reasonable roughness parameter that can reflect the peak shear strength(PSS)of rock joints.Firstly,the contribution of the asperities with different apparent dip angles to shear strength... This study aims at proposing a reasonable roughness parameter that can reflect the peak shear strength(PSS)of rock joints.Firstly,the contribution of the asperities with different apparent dip angles to shear strength is studied.Then the shear strength of the entire joint asperities is derived.The results showed that the PSS of the entire joint asperities is proportional to a key parameter hs,which is related to the geometric character of the joint surface and the joint material properties.The parameter hsis taken as the new roughness parameter,and it is reasonable to associate the PSS with the geometric characteristics of the joint surface.Based on the new roughness parameter and shear test results of 20 sets of joint specimens,a new PSS model for rock joints is proposed.The new model is validated with the artificial joints in this paper and real rock joints in published studies.Results showed that it is suitable for different types of rock joints except for gneiss joints.The new model has the form of the Mohr-Coulomb model,which can directly reflect the relationship between the 3 D roughness parameters and the peak dilation angle. 展开更多
关键词 ROUGHNESS joint material properties Rock joints Peak shear strength ASPERITIES
下载PDF
Shear strength criteria for rock,rock joints,rockfill and rock masses:Problems and some solutions 被引量:45
13
作者 Nick Barton 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第4期249-261,共13页
Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has rece... Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected. 展开更多
关键词 Rock masses Critical state Rock joints Shear strength Non-linear friction Cohesion Dilation Scale effects Numerical modelling Stress transforms
下载PDF
Computing in-situ strength of rock masses based upon RQD and modified joint factor: Using pressure and damage sensitive constitutive relationship 被引量:2
14
作者 Ashutosh Trivedi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期540-565,共26页
In th is study, a n e w m odel w as p re se n te d for com p u tin g stre n g th o f rock m asses based u p o n in -situo bservations o f RQD p o pularly kno w n as rock quality d esignation. This m odel links u p th ... In th is study, a n e w m odel w as p re se n te d for com p u tin g stre n g th o f rock m asses based u p o n in -situo bservations o f RQD p o pularly kno w n as rock quality d esignation. This m odel links u p th e rock m assp aram eters from in -situ investigations w ith th e stre n g th p a ram eters o f jo in ted rocks obtain ed fromlaboratory scale ex p erim en tal observations. Using th e co n stitu tiv e relation, th e a u th o r derived a p ressu reand d am age sensitive plastic p a ra m e te r to d ete rm in e stre n g th o f rock m asses for varied ex te n ts ofd isco n tin u ity an d p ressu re induced dam age. The te s t results show th a t plasticity characterized byhard en in g an d softening inclusive o f dam ag e invariably d e p en d s u p o n m ean p ressu re an d e x te n t ofdefo rm atio n s alread y experien ced by rock m asses. The p re se n t w ork explores th e te s t d a ta th a t revealth e d ep en d en c e o f in -situ stren g th on increm ental jo in t p ara m e te rs o b tain ed from th e jo in t num ber,jo in t orien tatio n , jo in t roughness, gouge p a ram eters an d w a te r pressure. S ubstituting th e relationshipb e tw e e n th e RQD and m odified jo in t factor w ith th a t b e tw e e n m odulus ratio an d stren g th ratio, th em odel show s successfully th a t using d am age inclusive plastic p a ra m e te r an d RQD provides a relationshipfor estim atin g th e stre n g th o f rock m asses. One o f th e m ain objectives o f this w ork is to illustrate th a t th ep re se n t m odel is sensitive to p la s tic ity a n d dam ag e to g e th e r in estim atin g in -situ stre n g th o f rock m assesin foundations, u n d e rg ro u n d excavation an d tunnels. 展开更多
关键词 strength ratio Rock mass Plastic parameter joint parameters DAMAGE Rock quality designation(RQD)
下载PDF
Microstructure and mechanical property of resistance spot welded joint of aluminum alloy to high strength steel with especial electrodes 被引量:2
15
作者 张伟华 孙大千 +3 位作者 殷世强 韩立军 高阳 邱小明 《China Welding》 EI CAS 2011年第2期1-6,共6页
Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface a... Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget. 展开更多
关键词 aluminum alloy high strength steel resistance spot welded joint microstructure mechanical property
下载PDF
Investigation on jointed rock strength based on fractal theory 被引量:1
16
作者 YANG Lan-lan XU Wei-ya +1 位作者 MENG Qing-xiang WANG Ru-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第7期1619-1626,共8页
Strength of discontinuities with complex structure is an important topic in rock engineering.A large number of studies have shown that fractal is applicable in the description of this discontinuity.Using fractal inter... Strength of discontinuities with complex structure is an important topic in rock engineering.A large number of studies have shown that fractal is applicable in the description of this discontinuity.Using fractal interpolation method for the generation of rock joints,numerical experiments of shear tests of the jointed rock mass model were carried out using FLAC^(3D).The test results show that the real rock joints can be simulated by fractal curves obtained by fractal interpolation.The fractal dimension is an important factor for the characterization of jointed rock mass;test results show that the fractal dimension of rock joints can be related to the equivalent cohesion strength and shear strength of the rock mass.When the fractal dimension of the joint surface is less than critical dimension Dc 1.404,the cohesion strength and shear strength of the rock mass increase as the fractal dimension increases;for larger fractal dimensions,all mechanical parameters decrease as the fractal dimension increases.Joint surfaces with different degrees of roughness were obtained by the fractal interpolation method.Three types of failure modes were observed in the tests:climbing slip failure,climbing gnawing fracture,and non-climbing gnawing fracture. 展开更多
关键词 ROCK jointS FRACTAL DIMENSION SHEAR strength numerical simulation
下载PDF
Interfacial intermetallic compound growth and shear strength of low-silver SnAgCuBiNi/Cu lead-free solder joints 被引量:1
17
作者 Guo-qiang Wei Lei Wang +1 位作者 Xin-qiang Peng Ming-yang Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第9期883-889,共7页
The growth rule of the interfacial intermetallic compound (IMC) and the degradation of shear strength of Sn-0.SAg-0.5Cu-2.0Bi-0.05Ni (SACBN)/Cu solder joints were investigated in comparison with Sn-3.0Ag-0.5Cu (S... The growth rule of the interfacial intermetallic compound (IMC) and the degradation of shear strength of Sn-0.SAg-0.5Cu-2.0Bi-0.05Ni (SACBN)/Cu solder joints were investigated in comparison with Sn-3.0Ag-0.5Cu (SAC305)/ Cu solder joints aging at 373, 403, and 438 K. The results show that (Cul-x,Nix)6Sn5 phase forms between the SACBN solder and Cu substrate during soldering. The interracial IMC thickens constantly with the aging time increasing, and the higher the aging temperature, the faster the IMC layer grows. Compared with the SAC305/Cu couple, the SACBN/Cu couple exhibits a lower layer growth coefficient. The activation energies of IMC growth for SACBN/Cu and SAC305/Cu couples are 111.70 and 82.35 kJ/mol, respectively. In general, the shear strength of aged solder joints declines continuously. However, SACBN/Cu solder joints exhibit a better shear strength than SAC305/Cu solder joints. 展开更多
关键词 soldering alloys soldered joints AGING INTERMETALLICS activation energy shear strength
下载PDF
An innovative joint interface design for reducing intermetallic compounds and improving joint strength of thick plate friction stir welded Al/Mg joints 被引量:2
18
作者 Yang Xu Liming Ke +3 位作者 Yuqing Mao Jifeng Sun Yaxiong Duan Limin Yu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3151-3160,共10页
Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configuration... Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configurations, namely inclined butt(conventional butt) and serrated interlocking(innovative butt), are proposed for improving weld formation and joint quality. The results show that a continuous and straight intermetallic compound layer appears at the Mg side interface in conventional butt joint, and the maximum average thickness reaches about 60.1 μm.Additionally, the Mg side interface also partially melts, forming a eutectic structure composed of Mg solid solution and Al_(12)Mg_(17) phase.For the innovative butt joint, the Mg side interface presents the curved interlocking feature, and intermetallic compounds can be reduced to less than 10 μm. The joint strength of innovative butt joint is more than three times that of conventional butt joint. This is due to the interlocking effect and thin intermetallic compounds in the innovative joint. 展开更多
关键词 Al/Mg joint Friction stir welding Thick plate Intermetallic compounds joint strength
下载PDF
Prediction of Static Strength of Tubular T and X Joints Subjected to Axial Compression 被引量:1
19
作者 Chen Tieyun , Liu Pu Wang Deyu Professor, Department of Naval Architecture and Ocean Engineering, Shanghai Jiao Tong University, Shanghai,200030Post-Doctoral Researcher, Department of Naval Architecture and Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200030 《China Ocean Engineering》 SCIE EI 1994年第1期31-40,共10页
-The formulation of ring analogy method for the prediction of static strength (ductile collapse) of tubular T, X joints under axial compression based on the limit analysis of the ring with some assumptions is presente... -The formulation of ring analogy method for the prediction of static strength (ductile collapse) of tubular T, X joints under axial compression based on the limit analysis of the ring with some assumptions is presented in this papaer. The regression formula for the effective length of the chord based on test results is established by means of the least square method. The results computed by the present semi-analytic formula are compared with previous results and test data. They are quite close to each other. The accuracy of the present formula depends on the reasonable selection of the effective length of the chord, which requires numerous test data. 展开更多
关键词 tubular joints static strength ring analogy model plastic collapse load regression formulation
下载PDF
Experimental investigation on tensile strength of butt welded joint post high temperatures 被引量:1
20
作者 曹平周 陈建锋 赵文涛 《China Welding》 EI CAS 2009年第3期21-26,共6页
In order to investigate the laws of variation on tensile strength of butt welded joint post high temperatures, the wide plate tension tests for butt welded joint were conducted after cooling down from different high t... In order to investigate the laws of variation on tensile strength of butt welded joint post high temperatures, the wide plate tension tests for butt welded joint were conducted after cooling down from different high temperatures. The tests indicate that specimens appear ductile fracture at the steel plate during the tension tests after cooling down. The maximum temperatures undergone and the cooling pattern are major factors influencing tensile strength of butt welded joint post high temperatures. The tensile strength mostly reduces by 8% within 900℃. Based on the experimental results, the paper proposes the calculation formulas of tensile strength of butt welded joint post high temperatures. The conclusions of the paper supply references for evaluation damage and reinforcement of steel structure post fire. 展开更多
关键词 butt welded joint post high temperatures tensile strength experimental investigation
下载PDF
上一页 1 2 147 下一页 到第
使用帮助 返回顶部