Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the avail...Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the availability of the filler material. In the present investigation, the fatigue crack growth behaviour of weld metal (WM) and heat affected zone (HAZ) regions of under matched (UM), equal matched (EM) and over matched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) process has been used to fabricate the butt joints. Centre cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behaviour of the welded joints. Fatigue crack growth experiments have been conducted using servo hydraulic controlled fatigue testing machine at constant amplitude loading (R=0).A method has been proposed to predict the fatigue life of HSLA steel welds using fracture mechanics approach by incorporating influences of mismatch ratio (MMR) and notch location.展开更多
The wood friction welding technique with its high bonding strength,low cost,high efficiency,and without any adhesive has been increasing concern in China.Moso bamboo(Phyllostachys pubescens)and poplar(Populus sp.)are ...The wood friction welding technique with its high bonding strength,low cost,high efficiency,and without any adhesive has been increasing concern in China.Moso bamboo(Phyllostachys pubescens)and poplar(Populus sp.)are widely planted and used in the furniture industry,interior decoration,and wood structure construction in China.The aim of this work was to investigate the bonding performance of moso bamboo dowel rotation welded joints with different dowel/receiving hole diameter ratios.The results indicated that the ratio of dowel/receiving hole diameter was an important parameter that influenced the welding performance.The bonding strength of the bamboo-to-poplar welded joints at the optimal ratio of 10/7 was as high as 7.50 MPa,which was higher than that of the beech(Fagus sylvatica,L.),schima(Schima superba)dowels and PVAc glued joints.The temperature measurement results showed a peak temperature of bamboo dowel welding as high as 350–360°C.Some differences in the temperature curves between each dowel/hole diameter ratio group were observed at the three different hole depths,such as the friction time,peak temperatures,and stabilization time at the maximum temperature,which could explain the differences in welding strengths between different ratios.The SEM results showed the temperature-induced softening,melting and flowing of cell-interconnected polymer material in the wood and bamboo structure.In addition,the bamboo fibers(mainly vascular bundles)were wrapped to form a dense continuous bonding layer,similar to the reinforced concrete,thus producing a good bonding effect.The Fourier transform-infrared spectroscopy(FT-IR)analyses showed that the high temperature resulted in the increase of the lignin relative content due to the degradation reaction of cellulose in the welding zone,which improved the bonding properties.展开更多
文摘Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the availability of the filler material. In the present investigation, the fatigue crack growth behaviour of weld metal (WM) and heat affected zone (HAZ) regions of under matched (UM), equal matched (EM) and over matched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) process has been used to fabricate the butt joints. Centre cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behaviour of the welded joints. Fatigue crack growth experiments have been conducted using servo hydraulic controlled fatigue testing machine at constant amplitude loading (R=0).A method has been proposed to predict the fatigue life of HSLA steel welds using fracture mechanics approach by incorporating influences of mismatch ratio (MMR) and notch location.
基金the National Natural Science Foundation of China(31870543)the Youth Science and Technology Innovation Fund of Nanjing Forestry University(cx2016017)+4 种基金the National Key R&D Program of China(2017YFC0703501)the National Natural Science Foundation of China(51878590)Jiangsu Province High-level Talent Selection Training(JNHB-127)Jiangsu Provincial Department of Housing and construction(2018ZD117 and 2019ZD092)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20170926 and BK20150878)for their funding。
文摘The wood friction welding technique with its high bonding strength,low cost,high efficiency,and without any adhesive has been increasing concern in China.Moso bamboo(Phyllostachys pubescens)and poplar(Populus sp.)are widely planted and used in the furniture industry,interior decoration,and wood structure construction in China.The aim of this work was to investigate the bonding performance of moso bamboo dowel rotation welded joints with different dowel/receiving hole diameter ratios.The results indicated that the ratio of dowel/receiving hole diameter was an important parameter that influenced the welding performance.The bonding strength of the bamboo-to-poplar welded joints at the optimal ratio of 10/7 was as high as 7.50 MPa,which was higher than that of the beech(Fagus sylvatica,L.),schima(Schima superba)dowels and PVAc glued joints.The temperature measurement results showed a peak temperature of bamboo dowel welding as high as 350–360°C.Some differences in the temperature curves between each dowel/hole diameter ratio group were observed at the three different hole depths,such as the friction time,peak temperatures,and stabilization time at the maximum temperature,which could explain the differences in welding strengths between different ratios.The SEM results showed the temperature-induced softening,melting and flowing of cell-interconnected polymer material in the wood and bamboo structure.In addition,the bamboo fibers(mainly vascular bundles)were wrapped to form a dense continuous bonding layer,similar to the reinforced concrete,thus producing a good bonding effect.The Fourier transform-infrared spectroscopy(FT-IR)analyses showed that the high temperature resulted in the increase of the lignin relative content due to the degradation reaction of cellulose in the welding zone,which improved the bonding properties.