期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Strength reduction factors for seismic analyses of buildings exposed to near-fault ground motions 被引量:2
1
作者 Qu Honglue Zhang Jianjing J.X. Zhao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期195-209,共15页
To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors (R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records... To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors (R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records with directivity-induced pulses. In the evaluation, the force-deformation relationship is modelled by elastic-perfectly plastic, bilinear and stiffness degrading models, and two site conditions, rock and soil, are considered. The R-value ratio (ratio of the R value obtained from the existing R-expressions (or the R-p-T relationships) to that from inelastic analyses) is used as a measurement parameter. Results show that the R-expressions proposed by Ordaz & Perez-Rocha are the most suitable for near-fault ground motions, followed by the Newmark & Hall and the Berrill et al. relationships. Based on an analysis using the near-fault ground motion dataset, new expressions of R that consider the effects of site conditions are presented and verified. 展开更多
关键词 strength reduction factors near-fault ground motion response spectra force-deformation relationship
下载PDF
Study on strength reduction factors consid-ering the effect of classification of design earthquake
2
作者 翟长海 谢礼立 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第3期299-310,共12页
The strength reduction factors are not only the key factors in determining seismic action for force-based seismic design, but also the key parameters to derive the inelastic response spectra for performance-based seis... The strength reduction factors are not only the key factors in determining seismic action for force-based seismic design, but also the key parameters to derive the inelastic response spectra for performance-based seismic design. In this paper, with a high quality ground motion database that includes a reasonable-sized set of records from China, a statistical study on the strength reduction factors is conducted and a new expression of strength reduction factors involving classification of design earthquake, which is an important concept to determine design spectra in Chinese seismic design code, is proposed. The expression of strength reduction factors can reflect the ground motion characteristics of China to a certain extent and is particularly suitable for Chinese seismic design. Then, the influence effects of site condition, classification of design earthquake, period of vibration, ductility level, earthquake magnitude and distance to fault on strength reduction factors are investigated. It is concluded that the effect of site condition on the strength reduction factors cannot be neglected, especially for the short-period structures of higher ductility. The classification of design earthquake also has an important effect on strength reduction factors and it may be unsuitable to use the existing expressions of strength reduction factors to the design spectra of current Chinese seismic code. The earthquake magnitude has no practical effect on strength reduction factors and if the near-fault records with forward directivity effect are not taken into consideration, the effect of distance to fault on strength reduction factors can also be neglected. 展开更多
关键词 strength reduction factor site condition classification of design earthquake strong ground motion regression analysis
下载PDF
Effect of Inclined Tension Crack on Rock Slope Stability by SSR Technique
3
作者 Ch.Venkat Ramana Niranjan Ramchandra Thote Arun Kumar Singh 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期1205-1214,共10页
The tension cracks and joints in rock or soil slopes affect their failure stability.Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences.The actual slopes consist of inho... The tension cracks and joints in rock or soil slopes affect their failure stability.Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences.The actual slopes consist of inhomogeneous materials,complex morphology,and erratic joints.Most studies concerning the failure of rock slopes primarily focused on determining Factor of Safety(FoS)and Critical Slip Surface(CSS).In this article,the effect of inclined tension crack on a rock slope failure is studied numerically with Shear Strength Reduction Factor(SRF)method.An inclined Tension Crack(TC)influences the magnitude and location of the rock slope’s Critical Shear Strength Reduction Factor(CSRF).Certainly,inclined cracks are more prone to cause the failure of the slope than the vertical TC.Yet,all tension cracks do not lead to failure of the slope mass.The effect of the crest distance of the tension crack is also investigated.The numerical results do not show any significant change in the magnitude of CSRF unless the tip of the TC is very near to the crest of the slope.ATC is also replaced with a joint,and the results differ from the corresponding TC.These results are discussed regarding shear stress and Critical Slip Surface(CSS). 展开更多
关键词 Crest distance critical shear strength reduction factor critical slip surface inclined tension crack JOINT
下载PDF
Fatigue Characterization on a Cast Aluminum Beam of a High-Speed Train Through Numerical Simulation and Experiments 被引量:1
4
作者 Weiyuan Dou Lele Zhang +2 位作者 Haifeng Chang Haifeng Zhang Changqing Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期349-359,共11页
The cast aluminum beam is a key structure for carrying the body-hung traction motor of a high-speed train;its fatigue property is fundamental for predicting the residual life and service mileage of the structure.To ch... The cast aluminum beam is a key structure for carrying the body-hung traction motor of a high-speed train;its fatigue property is fundamental for predicting the residual life and service mileage of the structure.To characterize the structural fatigue property,a finite element-based method is developed to compute the stress concentration factor,which is used to obtain the structural fatigue strength reduction factors.A full-scale fatigue test on the cast aluminum beam is designed and implemented for up to ten million cycles,and the corresponding finite element model of the beam is validated using the measured data of the gauges.The results show that the maximum stress concentration occurs at the fillet of the supporting seat,where the structural fatigue strength reduction factor is 2.45 and the calculated fatigue limit is 35.4 MPa.Moreover,no surface cracks are detected using the liquid penetrant test.Both the experimental and simulation results indicate that the cast aluminum beam can satisfy the service life requirements under the designed loading conditions. 展开更多
关键词 High-speed train Cast aluminum beam Fatigue test Stress concentration Fatigue strength reduction factor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部